Experimental mini-review: inclusive $|V_{ub}|$

Florian U. Bernlochner

florian.bernlochner@cern.ch

on behalf of the BABAR collabor

University of Victoria, British Columbia, Canada

September 29, 2012

CKM 2012 Cincinnati Ohio, USA

Overview

- I. Introduction
- $\rm II. + \rm III.$ Tagging and Simulation techniques.
 - IV. Inclusive Analyses from *BABAR* , *Belle*, and others.
 - V. Summary and some thoughts on current results.

I.a Introduction

 V_{qb}

* Measurements of the partial branching fractions of charmless inclusive semileptonic decays offer a way to measure $|V_{ub}|$ (which is independent from

exclusive or leptonic channels)

* Inclusive semileptonic $B \to X_u \, \ell \, \bar{\nu}_\ell$ decays characterized by

 $q^2 = (p_B - p_X)^2 = (p_\ell + p_{\bar{\nu}_\ell})^2$: 4-momentum transfer m_X : hadronic mass

 $P_+ = E_X - |\vec{p}_X|$: light-cone momentum

- * Abundant $B \to X_c \, \ell \, \bar{\nu}_\ell$ important Bkg.
- * Inclusive decay rate $d\Gamma_{\text{theory}} / \left(dE_{\ell} dm_X dq^2 \right)$ can be predicted by QCD:

Calculations: ADFR [EPJC:59;831], BLNP [NPB:699;335], DGE [JHEP:0601097], GGOU[JHEP:0710:058], BLL [PRDD64:113004]

Differ significantly in their treatment of pert. corrections and the parameterization of non-pert. effects.

* Large $B \to X_c \, \ell \, \bar{\nu}_{\ell}$ and other Bkgs present \leftrightarrow only partial branching fraction $\Delta \mathcal{B}$ can be measured

$$ightarrow |V_{ub}| = \sqrt{rac{\Delta \mathcal{B}}{ au_B riangle \Gamma_{ ext{theory}}}}$$

II.a Tag and Recoil

- ★ Desirable to measure △B in B-rest frame
- Useful to reconstruct hadronic X_u system
- \rightarrow Full reconstruction of 2nd B meson to separate hadronic $b \rightarrow u$ system from the rest

of the event

* Candidates for recoil and tag side

 $(\rightarrow$ Illustration)

If properly assigned one can reconstruct ...

- 1. $p_X = \sum_i p_i^{\text{track}} + \sum_i p_i^{\text{clust.}} (\rightarrow m_X)$
- 2. $\vec{p}_{B^{recoil}} = -\vec{p}_{B^{tag}}$
- 3. $p_{\nu} = p_{B^{\text{recoil}}} p_X p_{\ell} (\rightarrow m_{\text{miss}}^2)$ 4. $q^2 = (p_{B^{\text{recoil}}} - p_X)^2 = (p_{\ell} + p_{\nu})^2$

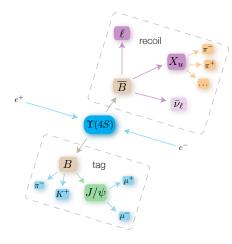
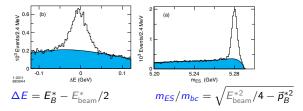
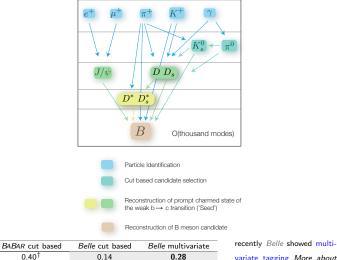



Illustration of tag & recoil side of $e^+e^- \rightarrow$ $\Upsilon(4S) \rightarrow B\overline{B}.$

II.b m_{bc}/m_{ES} and ΔE

→ Beam constraint mass (m_{bc}/m_{ES}) and energy difference (ΔE) help to distinguish random assignments from true tag candidates.



Formulae in CM frame: E_{beam}^* denotes the beam energy, and (E_B^*, \vec{p}_B^*) the 4-momentum of the B meson.

- \rightarrow # of true *B* mesons on tag side evaluated via binned or unbinned LH fits using these variables.
- → Slight difference between the B-Factories in what reference frame they are calculated: Lab (BABAR) vs CM (Belle)

II.c Tagging Algorithmes at the B-Factories

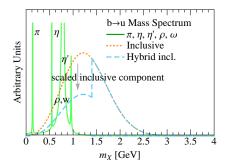
Cut Based approach

0.18

0.10

variate tagging More about this later.

0.21 = contributions from all modes, including low purity ones.


 ϵ^{tag} (in %)

 B_{tag}^+ B_{tag}^0

III.a Simulation of $B \to X_u \,\ell \, \bar{\nu}_\ell$

 \rightarrow Crucial to simulate $B \rightarrow X_u \, \ell \, \bar{\nu}_\ell$ as accurate as possible.

- Need MC for efficiencies (e.g. q² − E_ℓ type analyses).
- * Need actual MC shape for fits (e.g. inclusive analyses).

Sketch of the mix of exclusive and inclusive $B \to X_u \, \ell \, \bar{\nu}_\ell$ in m_X to create 'Hybrid' signal Monte Carlo.

\rightarrow Simulation done in a four step procedure:

- 1 Simulate inclusive $b \rightarrow u \ell \bar{\nu}_{\ell}$; Hadronization via JETSET.
- 2 Reweigh in (m_X, q^2, E_ℓ) to match the inclusive $B \to X_u \,\ell \,\bar{\nu}_\ell$ QCD calculations (cf. slide 3)
- 3 Simulate exclusive $B \rightarrow h \ell \bar{\nu}_{\ell}$ for $h = \pi, \rho \omega, \eta, \eta'$;
- 4 Mix the two to create 'Hybrid MC'. In the resonant region ($m_X < 1.4$ GeV) the inclusive prediction is scaled down in (m_X, q^2, E_ℓ) so that $\mathcal{B}(B \to X_u \ell \bar{\nu}_\ell)$ is conserved.

IV.a Overview: $|V_{ub}|$ measurements

Measurement	Variable	Cut	Reference	Year
CLEO	Ε _ℓ	$2.1{ m GeV} < E_\ell < 2.6{ m GeV}$	[Phys.Rev.Lett.88:231803]	2002
Belle	(m_X, q^2)	$m_X<1.7{ m GeV},q^2>8{ m GeV}^2$	[Phys.Rev.Lett.92:101801]	2004
Belle	E _ℓ	$1.9{ m GeV} < E_\ell < 2.6{ m GeV}$	Phys.Lett.B621:28-40	2005
BABAR	E_{ℓ}	$2.0{ m GeV} < E_\ell < 2.6{ m GeV}$	[Phys.Rev.D73:012006]	2006
BABAR	(E_{ℓ}, s_h^{\max})	2.0 GeV $< E_\ell$, $s_h^{ m max} <$ 3.5 GeV 2	[Phys.Rev.Lett.95:111801]	2005
Belle	(m_X, q^2)	$E_\ell > 1.0~{ m GeV}$	[Phys.Rev.Lett.104:021801]	2010
BABAR	(m_X, q^2)	$E_\ell>1.0$ GeV	[Phys.Rev.D86,032004]	2012
	E _ℓ	$E_{\ell} > 1.0 \& E_{\ell} > 1.3$		
	mχ	$m_X < 1.55 { m GeV} \& m_X < 1.7 { m GeV}$		
	q^2	$m_{\chi} < 1.7 \text{ GeV} \& q^2 > 8 \text{ GeV}^2$		
	P_+	$P_+ < 0.66~{ m GeV}$		

List of measurements considered by HFAG for $|V_{ub}|$ averages.

$\rightarrow\,$ Clear trend to increase the acceptance and measure larger fractions of the accessible phase space

(E.g. first measurement covered \approx 19%, the latest \approx 89% of the available phase space)

→ Will only cover [Phys.Rev.Lett.104:021801] & [Phys.Rev.D86,032004]

IV.b Analyses side-by-side

Belle [Phys.Rev.Lett.104:021801]:

 605 fb⁻¹ analyzed using cut-based hadronic tag

tag side m_{bc} (calculated in CM frame)

- Multivariate recoil selection using a Boosted Decision Tree (BDT) Purity ~ 22 %
- * Measures ΔB

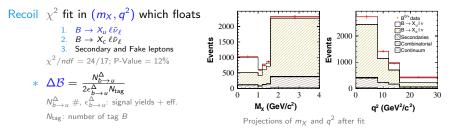
i.e. normalize with # of tagged events

* $p_{\ell}^{B*} > 1.0 \text{ GeV}$; analyzed via 2D fit in (m_X, q^2)

BABAR [Phys.Rev.D86,032004]:

- * 426 fb⁻¹ analyzed using cut-based hadronic tag
- tag side m_{ES} (calculated in lab frame)
 - * Cut based recoil selection Purity \sim 18 %
 - * Measures $\frac{\Delta B}{B(B \to X \ \ell \ \bar{\nu}_{\ell})}$ i.e. through normalization mode
 - * $p_{\ell}^{B*} > 1.0 \text{ GeV}$; analyzed via 2D fit in (m_X, q^2)
 - * Further phase-space regions considered using 1D fits: p_{ℓ}, m_X, q^2, P_+

IV.c Belle [Phys.Rev.Lett.104:021801]


* BDT trained to separate $B \to X_u \,\ell \,\bar{\nu}_\ell$ from other $B\bar{B}$ Bkg decays.

Selection of highest discriminative variables:

Variable	Comment
$\sum_i Q_i$	Net charge correlated with track multiplicity
# of K	$b ightarrow u + s \overline{s}$ popping vs $b ightarrow c ightarrow s$
m_{miss}^2	Peaks at zero for SL event, missing particles create a tail towards pos. values
$m_{\text{miss }D^*}^2$	D^* momentum infered from slow pions in event.

* Cut on BDT classifier optimized with respect to total uncertainty $_{\rm (stat+sys+theo)}$ and lower threshold of $p_\ell^{B*}>1.0~{\rm GeV}$ imposed

Tag Fit to m_{bc} to subtract non- $B\bar{B}$ Bkg (comb. + continuum)

IV.c Belle [Phys.Rev.Lett.104:021801]

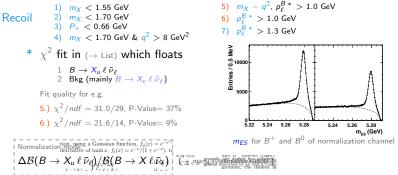
* Leading systematic uncertainty are due to $B \to X_u \, \ell \, \bar{\nu}_\ell$ modeling and due to PID and the BDT:

Source	$\Delta B/B$ (%)
$B \rightarrow X_{\mu} \ell \bar{\nu}_{\ell}$ (SF)	3.6
$B \rightarrow X_u \ \ell \ \bar{\nu}_\ell \ (g \rightarrow s\bar{s})$	1.5
$B \rightarrow X_u \ell \bar{\nu}_\ell$ exclusive	4.0
$B \to X_{\mu} \ell \bar{\nu}_{\ell}$ other	2.9
All $B \to X_u \ell \bar{\nu}_\ell$	5.8
$B \rightarrow X_c \ell \bar{\nu}_\ell$	1.7
PID and reconstruction	3.1
BDT	3.1
Other	2
Total	8.1

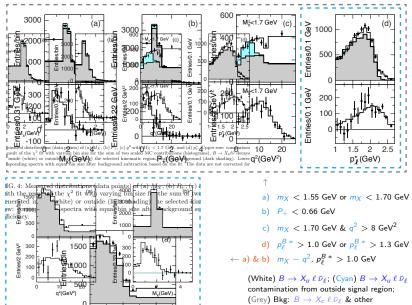
* Determined values of $|V_{ub}|$ and the partial branching fraction:

$\Delta B(p_{\ell}^{B*} > 1.0 { m GeV}) \ [10^{-3}]$	1 001 1		1 001 1 2
$1.96\pm0.17\pm0.16$	$4.47 \pm 0.27^{+0.19}_{-0.21}$	$4.54 \pm 0.27^{+0.10}_{-0.11}$	$4.60 \pm 0.27^{+0.11}_{-0.13}$

IV.c BABAR [Phys.Rev.D86,032004]


* Cut based $B \to X_u \, \ell \, \bar{\nu}_\ell$ selection.

Variable	$B \rightarrow X_u \ell \bar{\nu}_\ell$	$B \rightarrow X_c \ell \bar{\nu}_\ell$	Other
Only one lepton	99.3%	98.1%	95.8%
Total charge $Q = 0$	65.5 %	52.9 %	49.1%
$m_{\rm miss}^2$	44.2 %	17.8 %	17.8 %
$m_{\text{miss }D^*}^2$ veto	34.8 %	6.3 %	9.1 %
Kaon veto	33.8 %	2.2 %	4.7 %


Selection of cuts and the corresponding efficiencies for signal and background

Tag unbinned LH fit to m_{ES} to subtract non- $B\bar{B}$ Bkg (comb. + continuum)

Many regions of phase-space considered:

IV.c BABAR [Phys.Rev.D86,032004]

IV.c BABAR [Phys.Rev.D86,032004]

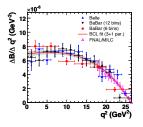
Source	$\Delta B/B$ (%)	Belle $\Delta B/B$ (%)
$B \rightarrow X_u \ell \bar{\nu}_\ell$ (SF)	5.6	3.6
$B \rightarrow X_u \ell \bar{\nu}_\ell (g \rightarrow s\bar{s})$	2.7	1.5
$B \rightarrow X_u \ell \bar{\nu}_\ell$ exclusive	1.9	4.0
$B \rightarrow X_u \ell \bar{\nu}_\ell$ unmeasured	-	2.9
All $B \rightarrow X_u \ell \bar{\nu}_\ell$	6.5	5.8
$B \to X_c \ell \bar{\nu}_\ell$	2.7	1.7
PID and reconstruction	3.4	3.1
BDT	-	3.1
Other	2.1	2
Total	8.4	8.1

* Leading systematic uncertainty are due to $B \to X_u \, \ell \, \bar{\nu}_\ell$, PID and tracking:

* Determined values of $|V_{ub}|$:

Measurement	BLNP $ V_{ub} $ [10 ⁻³]	GGOU $ V_{ub} $ [10 ⁻³]	DGE $ V_{ub} $ [10 ⁻³]
$(m_X, q^2); p_\ell^{B*} > 1.0 \; { m GeV}$	$4.28 \pm 0.23^{+0.18}_{-0.20}$	$4.35 \pm 0.24^{+0.09}_{-0.10}$	$4.40 \pm 0.24^{+0.12}_{-0.13}$
$p_\ell^{B*}>1.0{ m GeV}$	$4.30 \pm 0.28^{+0.18}_{-0.20}$	$4.36\pm0.30^{+0.09}_{-0.10}$	$4.42\pm0.30^{+0.13}_{-0.13}$
Belle [Phys.Rev.Lett.104:021801]	$4.47 \pm 0.27^{+0.19}_{-0.21}$	$4.54 \pm 0.27^{+0.10}_{-0.11}$	$4.60 \pm 0.27^{+0.11}_{-0.13}$

 \rightarrow Good agreement with *Belle* [Phys.Rev.Lett.104:021801]:


IV.x Summary of inclusive $|V_{ub}|$

* Tagged and untagged world averages:

Measurement	BLNP $ V_{ub} $ [10 ⁻³]	GGOU $ V_{ub} $ [10 ⁻³]	DGE $ V_{ub} $ [10 ⁻³]
BABAR [Phys.Rev.D86,032004]	$4.28 \pm 0.23^{+0.18}_{-0.20}$	$4.35 \pm 0.24^{+0.09}_{-0.10}$	$4.40 \pm 0.24^{+0.12}_{-0.13}$
Belle [Phys.Rev.Lett.104:021801]	$4.47 \pm 0.27 ^{+0.19}_{-0.21}$	$4.54 \pm 0.27^{+0.10}_{-0.11}$	$4.60 \pm 0.27^{+0.11}_{-0.13}$
Average Tagged [PBF]	$4.35 \pm 0.19^{+0.19}_{-0.20}$	$4.43 \pm 0.21^{+0.09}_{-0.11}$	$4.49 \pm 0.21^{+0.13}_{-0.13}$
Average Untagged [PBF]	$4.65 \pm 0.22^{+0.26}_{-0.29}$	$4.39 \pm 0.22^{+0.18}_{-0.24}$	$4.44 \pm 0.21^{+0.21}_{-0.25}$
Average All [PBF]	$4.40 \pm 0.15^{+0.19}_{-0.21}$	$4.39 \pm 0.15^{+0.12}_{-0.14}$	$4.45 \pm 0.15^{+0.15}_{-0.16}$

[Phys.Rev.D86,032004] is the (m_X, q^2) ; $p_{\ell}^{B*} > 1.0 \text{ GeV}$ result; average untagged calculated from untagged results on slide 9. All averages are from the Physics of the B-Factory Book.

- \rightarrow Good agreement between different QCD calculations.
- * But poor agreement with exclusive measurements from $B o \pi \, \ell \, ar
 u_\ell$

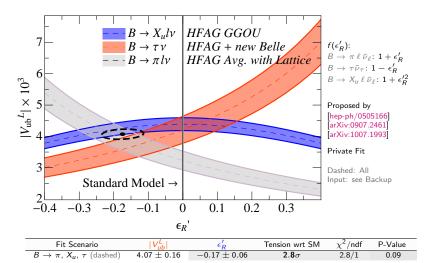
Fit result to the FNAL/MILC points, and untagged BaBar and Belle measurements:

[Phys.Rev.D.79.054507], [Phys.Rev.D.83.032007],

```
[Phys.Rev.D83.052011], [Phys.Rev.D.83.071101]
```

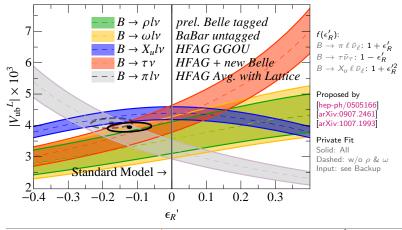
 $|V_{ub}|$ [10⁻³] 3.23 ± 0.30

```
\rightarrow tension of about 2.2 - 2.9 \sigma
```


(BLNP average, with and w/o 100% core. of sys.)

Hint for new physics? ^{or} Are we underestimating our uncertainties?

Three thoughts and what's next :

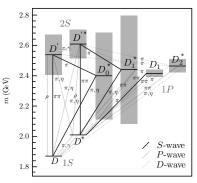

New physics, $b \rightarrow c$, the shape function, and multivariate B tagging

Thought #1: Is there new physics hiding in $|V_{ub}|$? New physics observable via right-handed currents? $|V_{ub}| = |V_{ub}^L| f(\epsilon_R' = \epsilon_R \Re \frac{V_{ub}^R}{V_{ub}^L})$

17 / 24

Thought #1: Is there new physics hiding in $|V_{ub}|$? New physics observable via right-handed currents? $|V_{ub}| = |V_{ub}^L| f(\epsilon_R' = \epsilon_R \Re \frac{V_{ub}^R}{V_{ub}^L})$

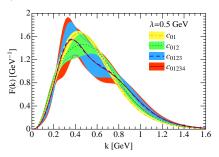
Fit Scenario	$ V_{ub}^L $	ϵ'_R	Tension wrt SM	χ^2/ndf	P-Value
$B \rightarrow \pi, X_{\mu}, \tau \text{ (dashed)}$	4.07 ± 0.16	-0.17 ± 0.06	2.8σ	2.8/1	0.09
$B \rightarrow \pi$, X_u , $\tau + \omega$, ρ (solid)	3.94 ± 0.15	-0.12 ± 0.06	1.9σ	9.0/3	0.03


Thought #2: The problem with $B \to X_c \,\ell \, \bar{\nu}_{\ell} ...$

* Inclusive vs exclusive 'Gap':

 $\mathcal{B}(B \to X_c \ \ell \ \bar{\nu}_\ell) - \mathcal{B}(B \to D^{(*)} \ \ell \ \bar{\nu}_\ell) - \mathcal{B}(B \to D^{(*)} \ \pi \ \ell \ \bar{\nu}_\ell) = (1.61 \pm 0.25) \%$ [private+HFAG11] Often 'gap' is filled with NR and $B \to D^{(*)} \ \ell \ \bar{\nu}_\ell$; [Phys.Rev.D86,032004] applies a further correction of:

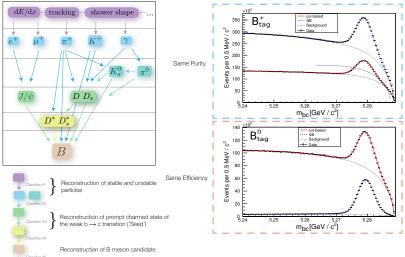
$$\lambda_{D^{**}} = \frac{\mathcal{B}(B \to D^{**} \ \ell \ \bar{\nu}_{\ell}) + \mathcal{B}^{NR}(B \to D^{(*)} \ \ell \ \bar{\nu}_{\ell})}{\mathcal{B}(B \to D^{(*)} \ \ell \ \bar{\nu}_{\ell}) + \mathcal{B}^{(B \to other)}} = 0.73 \pm 0.08$$


- \rightarrow Not the culprit for $|V_{ub}|$ tension, but could contribute to the difference: need an ad-hoc increase of this systematic by a factor of 5 eases the tension to $\approx 2\sigma$
- But need to study this 'gap' for further progress in $|V_{ub}|$
 - * Which are the missing D** modes?
 - * 3-body D^{**} (Observed for $D_1 \rightarrow D\pi\pi$ by Belle)
 - radial excit. [Phys.Rev.D.85.094033]?
 - \Rightarrow Sascha Turczyk's talk on Sunday.

Selection of strong fragmentations of excited charm

Thought #3: The shape function

- * So far the shape-function forces us to measure the partial branching fraction $\Delta \mathcal{B}$ where experimental uncertainties are large.
- ightarrow Most discriminating regions with low systematic uncertainties are not being used.
- * Complementary to the increase in acceptance, we should make sure to push for having a global fit that combines all available information to determine $|V_{ub}|$



The shape function with absorbed Λ_{QCD}/m_b corrections from fits to selected $B \to X_s \gamma$ spectra is shown.

 $\rightarrow\,$ Talk on Sunday about SIMBA and the status of global fits for $|V_{ub}|$

What's next? Multivariate Tagging (with NeuroBayes)

Multivariate approach

 \Rightarrow Impressive performance demonstrated by *Belle* at the summer conferences.

Nucl.Instrum.Meth. A654, 432-440 (2011), arXiv:1102.3876.

V. Summary and Conclusions

- * Presented a review of the two latest inclusive $|V_{ub}|$ measurements.
- * Persisting gap between inclusive and exclusive $|V_{ub}|$ remains an issue.
- * Are right-handed currents playing a role?
- * Are we underestimating some uncertainties? The treatment of $B \rightarrow X_c \, \ell \, \bar{\nu}_\ell$ is not satisfying, granted. Could it cause trouble?
- * New multivariate tagging looks like a very promising tool for tagged inclusive analyses. We are looking forward to see new results from *Belle*.

Backup

a. Input for ϵ'_R and $\left|V_{ub}^L\right|$ fit

* $B \rightarrow \tau \bar{\nu}_{\tau}$: Private HFAG + Belle average from Phillip Urquijo ICHEP12 talk

 $V_{ub} = (4.21 \pm 0.43) \times 10^{-3}$

- * $B \rightarrow X_u \, \ell \, \bar{\nu}_{\ell}$: HFAG End of 2011 GGOU result $V_{ub} = (4.39 \pm 0.21) \times 10^{-3}$
- * $B \rightarrow \pi \, \ell \, \bar{\nu}_{\ell}$: HFAG End of 2011 combined Lattice+Data result $V_{ub} = (3.23 \pm 0.30) \times 10^{-3}$
- * $B \rightarrow \omega \, \ell \, \bar{\nu}_{\ell}$: untagged BaBar result shown at ICHEP12 $\mathcal{B}(\text{full } q^2 \text{ range}) = (1.15 \pm 0.19) \times 10^{-4}$
- * $B \to \rho \, \ell \, \bar{\nu}_{\ell}$: uncertainty weighted average of ρ^0 and ρ^+ Belle results shown at ICHEP12

 $B(\text{full } q^2 \text{ range}) = (3.3 \pm 0.3) \times 10^{-4}$