$B^+ \rightarrow \tau^+ \nu$ and $B \rightarrow K^{(*)} \nu \nu$ at BaBar and SuperB

Dana Lindemann On Behalf of the BaBar Collaboration

CKM Workshop October 2, 2012

Outline

- Introduction
 - BaBar, SuperB, Hadronic Tag Reconstruction
- Updates on BaBar searches and prospects at SuperB for:
 - $B^+ \rightarrow \tau^+ \nu$ [arXiv: 1207.0698, Submitted to PRD] • $B \rightarrow K^{(*)} \nu \overline{\nu}$

Charge conjugate modes implied throughout talk

Dana Lindemann

Dana Lindemann

The SuperB Experiment

- Goal: 75 ab⁻¹ at Υ(4S) over 5 years
- $\mathscr{L} = 10^{36} \text{ cm}^{-2}\text{s}^{-1} (x100 \text{ luminosity of BaBar})$
- Flexible running energies (charm threshold to $\Upsilon(6S)$)
- 80% polarized electrons

- New collider design Smaller emittance → higher luminosity
- Detector concept based on reuse of BaBar components (also PEP-II components)
- Will be at Cabibbo Lab on Tor Vergata campus (Italy)

Hadronic Tag Reconstruction

• Distinguish signal decay and E_{miss} by exploiting $\Upsilon(4S) \rightarrow B\overline{B}$ production

1 Fully reconstruct B_{tag} in hadronic modes

Hadronic Tag Reconstruction

• Distinguish signal decay and E_{miss} by exploiting $\Upsilon(4S) \rightarrow B\overline{B}$ production

1 Fully reconstruct B_{tag} in hadronic modes

2 Look for signal decay in rest of the event

 Clean B samples with suppressed backgrounds

- B_{sig} 4-vector is determined, improving resolution on signal kinematics and p_{miss}
- Low reconstruction efficiency

Search for $B^+ \rightarrow \tau^+ \nu$

$B^+ \rightarrow l^+ v$: Theoretical Motivation

Provides clean predictions of SM parameters without hadronic (QCD) final-state uncertainties

$$\mathcal{B}(B \to \ell\nu) = \frac{G_F^2 m_B}{8\pi} m_l^2 (1 - \frac{m_l^2}{m_b^2})^2 f_B^2 |V_{ub}|^2 \tau_B$$

$$\overset{\text{Helicity suppression}}{\underset{(B \to \mu\nu)_{\text{SM}} \approx 10^{-11}}{B(B \to e\nu)_{\text{SM}} \approx 10^{-11}}} \underbrace{Experimental sensitivity to f_i |V_{ub}|}_{\text{Vub (exp + theory) and } f_i (theory) uncertainties dominate SM uncertainty}}_{B(B \to \tau\nu)_{\text{SM}} = (1.18 \pm 0.16) \times 10^{-4}}$$

$$\overset{\psi}{W^+}$$

$B^+ \rightarrow l^+ v$: Theoretical Motivation

Provides clean predictions of SM parameters without hadronic (QCD) final-state uncertainties

$$\begin{array}{c} \mathcal{B}(B \rightarrow \ell \nu) = \frac{G_F^2 m_B}{8\pi} m_l^2 (1 - \frac{m_l^2}{m_b^2})^2 f_B^2 |V_{ub}|^2 \tau_B \\ \mathcal{B}(B \rightarrow \ell \nu)_{\mathrm{SM}} \approx 10^{-7} \\ \mathcal{B}(B \rightarrow \mu \nu)_{\mathrm{SM}} \approx 10^{-1} \end{array} \qquad \begin{array}{c} \text{Experimental sensitivity to } f_g |Vub| \\ \mathrm{Ivub} |(\mathrm{exp} + \mathrm{theory}) \ \mathrm{and} \ f_g \ (\mathrm{theory}) \ \mathrm{uncertainties} \\ \mathrm{dominate SM} \ \mathrm{uncertainty} \end{array} \qquad \begin{array}{c} \mathcal{H} + \\ \mathcal{B}(B \rightarrow \tau \nu)_{\mathrm{SM}} \approx 10^{-1} \\ \mathcal{B}(B \rightarrow \tau \nu)_{\mathrm{SM}} = (1.18 \pm 0.16) \times 10^{-4} \\ \mathcal{H} + \\$$

Dana Lindemann

$B^+ \rightarrow \tau^+ \nu$ with Hadronic Tags arXiv:1207.0698 Submitted to PRD

$B^+ \rightarrow \tau^+ \nu$ with Hadronic Tags

Most discriminating variable: E_{extra}

- Sum of all remaining energy in calorimeter should be zero
- Misreconstructions, split-offs, & beam bkgs produce excess
- Validate E_{extra} with data using double-tagged samples

CKM - 2012

$B^+ \rightarrow \tau^+ \nu$: Results

- Extract BF using unbinned maximum likelihood fit to E_{extra}
- Signal and peaking bkg PDFs from MC corrected for data/MC ratio using m_{ES} Combinatorial bkg PDF from m_{ES} sidebands in data

 $\mathcal{B}(B \to \tau \nu) = (1.83^{+0.53}_{-0.49} \pm 0.24) \times 10^{-4}$

Exclusion of null hypothesis at 3.8 σ (incl. syst.)

Dana Lindemann

$B^+ \rightarrow \tau^+ \nu$ Results within Context

CKM - 2012

Dana Lindemann

Search for $B \rightarrow K^{(*)}vv$

$B \rightarrow K^{(*)}vv$: Theoretical Motivation

Flavor-Changing Neutral Current processes are not allowed at tree-level in SM

$B \rightarrow K^{(*)}vv$: with Hadronic Tag

- No additional tracks
- Restrict to low values of E_{extra}
- Suppress continuum bkg using LHR of 6 event-shape variables
- Define kinematic variable: $s_B = q^2/m_B^2$ (normalized invariant mass of neutrino pair)

- Reconstruct 6 signal channels in rest-of-event:
 - $B \rightarrow K^+ \nu \nu$
 - $B \rightarrow K_s^0 v v$
 - B \rightarrow [K*+ \rightarrow K+ π^0] $\nu\nu$
 - $B \rightarrow [K^{*+} \rightarrow K_s^0 \pi^+] vv$
 - $B \rightarrow [K^{*0} \rightarrow K^{+}\pi^{-}] v v$
 - $B \rightarrow [K^{*0} \rightarrow K_s^0 \pi^0] \nu \nu$

$B \rightarrow K^{(*)}vv$: Results

Branching-fraction upper limits at 90% CL within the low $s_{\rm p} = q^2/m_{\rm p}^2$ region

$B \rightarrow K^+ v v$	$B \rightarrow K^0 v \bar{v}$	$B \rightarrow K^{*+} v v v$	K*0vv	
(>0.4, < 3.7)	< 8.1	< 11.6	< 9.3	}
(>0.2, < 3	.2)	< 7.9		

BABAR preliminary

x10⁻⁵

B→K^(*)vv Partial Branching Fractions

$B \rightarrow K^{(*)}vv$: New Physics Constraints

CKM - 2012

•

•

Dana Lindemann

Conclusions

- Using hadronic-tag reconstruction, BaBar recently measured:
- B $\rightarrow \tau v$ branching fraction: $(1.83^{+0.53}_{-0.49} \pm 0.24) \times 10^{-4}$
 - Consistent with previous BaBar measurements
 - High compared with SM expectations
 - SuperB expects to measure $B \rightarrow \mu v$ and $B \rightarrow \tau v$ at 3-6% precision
- $B \rightarrow K^{(*)}vv$ branching fraction upper limits
 - Consistent with SM but process unobserved
 - Tighter constraints and partial branching fraction: offer improved sensitivity to New Physics
 - SuperB expects to observe and measure at 15-20% precision, assuming SM rates

Extra Slides

• ε fraction ~85% in bins 0.2-0.8 for this invisible scalar model

- Divide "sum" of bins by ϵ fraction: $(0.35^{+3.1}_{-1.5}) \times 10^{-5}$
- Corresponds to Upper Limit at 90% CL of ~4.2 x 10⁻⁵ for this model

$B \rightarrow \ell \nu$ Inclusive Analysis

Helicity suppressed but clean decay with monoenergetic lepton (2.64 GeV/c)

- Assign high momentum lepton (particle ID) and missing energy as signal decay
- Reject events with more leptons.
- Assign B_{tag} as rest of event with requirements on its ΔE and p_T
- Suppress background using Fisher discriminant of kinematic and event-shape variables.
- Extract yield from 2D fit to m_{ES} and $p_{FIT} = a_0 + a_1 p_1^{CM} + a_2 p_1^{B_{rest}}$
- No signal decays were observed.

90% CL	BaBar Inclusive	Belle Phys Lett B 647, 67 (2007)	Standard Model	
B→ev	< 1.9x10 ⁻⁶	< 0.98x10 ⁻⁶	~1x10 ⁻¹¹	
Β→μν	< 1.0x10 ⁻⁶	< 1.7x10 ⁻⁶	~5x10 ⁻⁷	

Dana Lindemann

PRD 79:091101 (2009)

$B \rightarrow \ell \nu \gamma$ with Hadronic Tag

B→τv Semi-Leptonic Tag

Dataset independent from hadronic analysis!

Exclusion of null hypothesis at 2.3 σ

PRD81:051101 (2010) 459 x10⁶ BB

Belle $B \rightarrow \tau v$ Hadronic Tag

arXiv 1208.4678 (2012)

Belle B $\rightarrow \tau v$ Hadronic 2006

PRL 97 251802 (2006) 449 x10⁶ BB

Belle B $\rightarrow \tau v$ Semi-Leptonic Tag

- Reconstruct evv, μvv , and πv (50% of τ modes)
- Requirements on τ momentum and $\cos\theta_{B,D\ell}$
- MC corrected for data/MC ratio using double-tagged E_{extra}

Channel Details **BABAR**

			and the second second second			
Variable	e^+ μ^+	π^+ $ ho^+$	Sec. 1	pre	liminary	
\mathcal{P}	> 109	%	A M.	pro	sinnin ar y	
Cluster energy	(MeV) > 60	0				
$\mathcal{R}2$	< 0.57 < 0.56 <	< 0.56 < 0.51				
$ \cos \theta_{TB} $	< 0.95 < 0.90 <	< 0.65 < 0.8	azcomb	$B^+ \rightarrow K^+ \nu \overline{\nu}$	$\frac{B^0 \to K^0 \nu \overline{\nu}}{0.0 + 0.$	
L_P	>	> 0.30 > 0.45	N _i Arpeak	$1.1 \pm 0.4 \pm 0.0$ $1.8 \pm 0.4 \pm 0.1$	$0.9 \pm 0.4 \pm 0.1$	
	-		N ⁱ N ^{bkg}	$1.8 \pm 0.4 \pm 0.1$ $2.0 \pm 0.6 \pm 0.1$	$2.0 \pm 0.5 \pm 0.2$ $2.0 \pm 0.6 \pm 0.2$	
Decay Mode	$\epsilon_{k}(\times 10^{-4})$ Signal yield	$B(\times 10^{-4})$	$\varepsilon_i^{\text{sig}}$ (x10 ⁻⁵)	$2.9 \pm 0.0 \pm 0.1$ $43.8 \pm 0.7 \pm 3.0$	$2.9 \pm 0.0 \pm 0.2$ $10.3 \pm 0.2 \pm 1.2$	
$\frac{2}{\pi^+ \rightarrow e^+ u \bar{u}}$	247 ± 0.14 4.1 ± 0.1	0.25+0.84	N_i^{obs}	4010 ± 011 ± 010 6	3	
$\tau \rightarrow e^{-} \nu \nu$	2.47 ± 0.14 4.1 ± 9.1	$0.30_{-0.73}$ 1 10 $^{+0.90}$	Limits	$(> 0.4, < 3.7) \times 10^{-1}$	$5 < 8.1 \times 10^{-5}$	
$\tau^+ \rightarrow \mu^+ \nu \nu$	2.45 ± 0.14 12.9 \pm 9.7	$1.12_{-0.78}$	\mathcal{B}_i	$(1.5^{+1.7}_{-0.8}) \times 10^{-5}$	$(0.14^{+6.0+1.7}_{-1.9-0.9}) \times 10^{-3}$	
$ au^+ ightarrow \pi^+ u$	0.98 ± 0.14 17.1 ± 6.2	$3.69^{+1.42}_{-1.22}$	Combined Lim	its (> 0.2, <	$3.2) \times 10^{-5}$	
$ au^+ ightarrow ho^+ u$	1.35 ± 0.11 24.0 ± 10.0	$3.78^{+1.05}_{-1.45}$	$\mathcal{B}(B \to K \nu \overline{\nu})$	$(1.4^{+1.4}_{-0.9})$	$^{+0.3}_{-0.2}$) × 10 ⁻⁵	
combined	62.1 ± 17.3	$1.83^{+0.53}_{-0.49}$				
		0140				
	$B^+ \to [K^+ \pi^0] \nu \overline{\nu}$	$B^+ \rightarrow [K^0_S \pi^+$	$^{+}]\nu\overline{\nu}$ B^{0}	$\rightarrow [K^+\pi^-]\nu\overline{\nu}$	$B^0 \rightarrow [K^0_S \pi^0] \nu \overline{\nu}$	
$N_i^{ m comb}$	$0.8\pm0.3\pm0.0$	$1.1\pm0.4\pm$	0.0 2.0	\pm 0.5 \pm 0.1	$0.5\pm0.3\pm0.0$	
N_i^{peak}	$1.3\pm0.4\pm0.1$	$1.2\pm0.4\pm$	0.1 5.0	\pm 0.8 \pm 0.5	$0.2\pm0.2\pm0.0$	
$N_i^{ m bkg}$	$2.0 \pm 0.5 \pm 0.1$	$2.3\pm0.5\pm$	0.1 7.0	\pm 0.9 \pm 0.5	$0.7\pm0.3\pm0.0$	
$\varepsilon_i^{ m sig}$ (×10 ⁻⁵)	$6.0 \pm 0.2 \pm 0.5$	$4.9\pm0.2\pm$	0.4 12.2	$2\pm0.3\pm1.4$	$1.2\pm0.1\pm0.1$	
$N_i^{ m obs}$	3	3		7	2	
Limits	$< 17.0 \times 10^{-5}$	$< 19.4 \times 10$) ⁻⁵ <	8.9×10^{-5}	$< 86 \times 10^{-5}$	
\mathcal{B}_i	$(3.5^{+10.4+2.5}_{-3.2}) \times 10^{-5}$	$(3.0^{+12.5+3.1}_{-3.9})$	$\times 10^{-5}$ (0.08 ⁺	$(5.6+2.3)_{-3.1-1.5} \times 10^{-5}$ (2)	$23^{+47+15}_{-11-4}) \times 10^{-5}$	
Combined Limits	s < 11	$< 11.6 \times 10^{-5}$		$< 9.3 \times 10^{-5}$		
$\mathcal{B}(B^{+/0} \rightarrow K^{*+/})$	$^{(0)}\nu\overline{\nu})$ (3.3 ^{+6.2} _{-3.6})	$^{+1.7}_{-1.3}) \times 10^{-5}$		$(2.0^{+5.2}_{-4.3}) \times$	10^{-5}	
Combined Limit	s		$<7.9\times10^{-5}$			
$\mathcal{B}(B \to K^* \nu \overline{\nu})$		(2	$(.7^{+3.8}_{-2.9}) \times 10^{-5}$			

Systematics

Source of systematics	\mathcal{B} uncertainty (%)
Additive	· ·
Background PDF	10
Signal PDF	2.6
Multiplicative	
Tag- B efficiency	5.0
B counting	1.1
Electron identification	2.6
Muon identification	4.7
Kaon identification	0.4
Tracking	0.5
MC statistics	0.6
Total	13

Source	K^+	$[K^+\pi^0]$	$[K^0_S\pi^+]$	K^0_S	$[K^+\pi^-]$	$[K^0_S\pi^0]$
$\varepsilon_i^{ m sig}$ normalization	3.5	3.5	3.5	8.9	8.9	8.9
$N_i^{\rm bkg}$ normalization	2.3	2.3	2.3	6.0	6.0	6.0
$N_i^{ m peak} \; {\cal B} { m s}$	2.8	2.8	2.8	2.8	2.8	2.8
$K^0_{\scriptscriptstyle S}$ reconstruction	_	_	1.4	1.4	_	1.4
K^* reconstruction	_	2.8	2.8	_	2.8	2.8
π^0 reconstruction	_	3.0	_	_	_	3.0
$E_{ m extra}$ shape	4.5	6.0	6.5	6.0	6.0	6.5
s_B resolution	3.6	3.6	3.6	3.6	3.6	3.6
Total N_i^{peak} syst.	6.8	8.9	8.8	9.7	10.0	10.9
Total N_i^{comb} syst.	2.3	2.3	2.3	6.0	6.0	6.0
Total $\varepsilon_i^{\text{sig}}$ syst.	6.7	8.8	8.8	11.4	11.7	12.4

Future Reach of SuperB and LHCb

Previous Measurements

Observable	BaBar	Belle
${ m BR}(B^+ o au^+ u_ au)~({ m SL})$	$(1.7\pm0.8\pm0.2) imes10^{-4}$ [11]	$(1.54^{+0.38+0.29}_{-0.37-0.31} \times 10^{-4}$ [12]
${ m BR}(B^+ o au^+ u_ au)~({ m HD})$	$(1.8^{+0.57}_{-0.54}\pm0.26)\times10^{-4}$ [13]	$(1.79^{+0.56+0.46}_{-0.49-0.51}) \times 10^{-4}$ [14]
$BR(B^+ \rightarrow e^+ v_e)$ (SL)	$< 0.8 \times 10^{-5}$ [11]	
$BR(B^+ \rightarrow e^+ \nu_e)$ (HD)	$< 1.9 \times 10^{-6}$ [15]	$< 0.98 \times 10^{-6}$ [16]
$BR(B^+ \rightarrow \mu^+ \nu_\mu)$ (SL)	$< 1.1 \times 10^{-5}$ [11]	-
$BR(B^+ \rightarrow \mu^+ \nu_\mu)$ (HD)	$< 1.0 \times 10^{-6}$ [15]	$< 1.70 \times 10^{-6}$ [16]

Collaboration	Voor	$N_{-} = nairs$	Tor	$\mathcal{B}(R \rightarrow$	$\mathcal{B}(R \rightarrow$	$\mathcal{B}(R \rightarrow$	$\mathcal{B}(R \rightarrow$
Conaboration	Tear	(BB pairs)	Tag	$D(D \rightarrow D)$	$D(D \rightarrow D)$	$D(D \rightarrow D)$	$D(D \rightarrow U^*)$
		$(\times 10^{\circ})$		$K^{+}\nu\nu)$	$K_{s}^{0}\nu\nu)$	$K^{+}\nu\nu)$	K [≁] ⁰ νν)
				$(\times 10^{-5})$	$(\times 10^{-5})$	$(\times 10^{-5})$	$(\times 10^{-5})$
BABAR [23]	2005	89	SL	< 7	_	_	_
BABAR [23]	2005	89	Had	< 6.7	-	_	_
Belle [24]	2007	535	Had	< 1.4	< 16	< 14	< 34
BABAR [25]	2008	454	SL	-	-	< 9	< 18
BABAR $[25]$	2008	454	Had	-	-	< 21	< 11
BABAR [26]	2010	459	SL	< 1.3	< 5.6	—	_

 ${\rm BR}(B\to K^*\nu\bar\nu) = 6.8\times 10^{-6}\,(1+1.31\,\eta)\epsilon^2 \ ,$

 $BR(B \to K \nu \bar{\nu}) = 4.5 \times 10^{-6} (1 - 2\eta) \epsilon^2$,

BR
$$(B \to X_s \nu \bar{\nu}) = 2.7 \times 10^{-5} (1 + 0.09 \eta) \epsilon^2$$

$$\langle F_L
angle = 0.54 \, rac{(1+2\,\eta)}{(1+1.31\,\eta)}$$

Altmannshofer, Buras, Straub, Wick, JHEP 0904:022 (2009)

CKM - 2012

Dana Lindemann

More Exclusion Plots

