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GENERAL DESCRIPTION

BY — 77— 70 CPV measurement
Dominated by B® — pEn¥
Update of a 2007 BaBar analysis*

Extracts information about «, and
other parameters

[2011 PDG]

* Phys. Rev. D 76, 012004 (2007)
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MOTIVATION

Interference between the tree and
penguin modes and decays with and
without mixing allows sensitivity to a

A precision measurement of a serves to
further test the Standard Model BO
through sensitivity to new physics in

loops

The use of a full Dalitz plot analysis

reduces ambiguities found in analyses

which ignore the interference regions
Time-Dependent Dalitz Plot pm

measurement of « first proposed by

Snyder and Quinn*

BO

* Phys. Rev. D 48, 2139 (1993)
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SUMMARY OF IMPROVEMENTS

@ A number of improvements have been made relative to the 2007 analysis:
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SUMMARY OF IMPROVEMENTS

@ A number of improvements have been made relative to the 2007 analysis:

@ Reoptimized multivariate discriminator cuts

@ And, importantly, performed robustness studies to assess the reliability with
which the true value of a can be extracted
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TIME-DEPENDENT PROBABILITY DISTRIBUTION

MO0 = S [l P P P F (101 = 1) cos(Amaan:
470
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ExampPLE Toy MC DaLiTZ PLOTS

@ The Dalitz plot is transformed to cover
a unit square before fitting
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ExampPLE Toy MC DaLiTZ PLOTS

@ The Dalitz plot is transformed to cover "
a unit square before fitting <.
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KINEMATIC VARIABLES

@ Loose cuts are applied using beam
energy constraints
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KINEMATIC VARIABLES

@ Loose cuts are applied using beam

energy constraints

@ mgs = <§)2 —(p
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KINEMATIC VARIABLES

@ Loose cuts are applied using beam

energy constraints

@ mgs = <\/g>2—(17

2
@ AE=E}—1/s
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KINEMATIC VARIABLES

@ Loose cuts are applied using beam

energy constraints

@ mgs = <

{)2—(17}?3)2

@ AE=E}—1/s

@ These variables are also included in the
fit
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MULTIVARIATE DISCRIMINATOR OPTIMIZATION

@ Discriminate signal from continuum (gg where A
q = u,d, s, c) using Neural Net discriminator :

Continuum Event Shape
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MULTIVARIATE DISCRIMINATOR OPTIMIZATION

@ Discriminate signal from continuum (gg where
q = u,d, s, c) using Neural Net discriminator

@ 4 Input variables provide sensitivity to event

topology
@ Trained using: [ TMVA response for classifier: MLP | Tava
e Signal MC with full detectorjémulation % 10 gf;gmu;d T T
@ Data collected below the BOB~ threshold s, ]
@ The NN is used for a loose selection cut and as a
variable in the fit ¢ I

2
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DATASET OVERVIEW

Correctly Reconstructed Signal MC
@ Data modeled using four components 1

@ Correctly reconstructed signal
@ Misreconstructed signal

@ 26 B backgrounds

@ Continuum ¢q background

@ Fixed and initial parameter values are
obtained from fits to:

@ Fully simulated MC
(for signal and B-bkgs)

@ Data collected below the BOEO
threshold
(for continuum)

@ A lower sideband in Mgg
(for continuum)

Mps Sideband Data

BaBar 9 / 40



FIrrTING

@ Data is fit using a multi-dimensional
extended maximum likelihood approach
with 6 input variables:
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FITTING

AE In Signal MC
@ Data is fit using a multi-dimensional

extended maximum likelihood approach 15000~ e
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FITTING

@ Data is fit using a multi-dimensional
extended maximum likelihood approach

with 6 input variables:

@ mgs, AE, NN output
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FITTING
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FITTING

@ Data is fit using a multi-dimensional
extended maximum likelihood approach

with 6 input variables:
e mgs, AE, NN output

@ Time-Dependent SDP: At
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FIrrTING

@ Data is fit using a multi-dimensional
extended maximum likelihood approach
with 6 input variables:

@ mgs, AE, NN output
@ Time-Dependent SDP: At,
(m’,6")

BaBar
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PARAMETERIZATION

@ There are several possible parameterizations for the decay probability

@ Each parameterization has advantages and drawbacks
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PARAMETERIZATION

@ There are several possible parameterizations for the decay probability
@ Each parameterization has advantages and drawbacks

@ Using magnitudes and phases (10 free parameters) leads to problems with
non-gaussian errors when magnitudes are small

o Using real and imaginary parts of amplitudes leads to ambiguous solutions and
difficulty in extracting physics parameters like «

@ Using a more sophisticated parameterization (26 free parameters) reduces
ambiguities in the solution and provides gaussian errors, but solutions may be
unphysical

@ Ultimately, it was determined that the third parameterization (with 26 free
parameters) is the most practical option
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U/I PARAMETERIZATION I

@ In our parameterization, 26 “U and I” parameters are calculated from the p
resonance amplitudes:

UHi = |AK‘2i|ZH‘2
UER™) = Re(lm) [A"A7* £ 4”47
I, = Im [ZRAH*}

IR = Re [Z”A"*—ZUA“*}

It = I [A%a7 A7 A
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U/I PARAMETERIZATION 11

@ The time-dependent probability distribution may then be expressed in terms of these
parameters as

+ 2 e |at/Tpo 2 2 2 2
lAZ, (A1) 7@ P4 140 1 F (140017 = 140, 1%) cos(AmgAt):
4TBQ
2Im [q ] sin(AmdAt)}
P
@ where

PPl = 3 1PuE 42 3 (Re[ffF1 USRS~ [fas3] US™)

KE[+,—,0] r<o€E€[+,—,0]
q * m * e
o | = S lPrs T (Relnssl i m[ng) 1)
P wE[+,—,0] k<o €[+,—,0]
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SYSTEMATIC STUDIES - THE p(1700)

@ Ideally, the systematic associated with omitting the p(1700) from our nominal fit
would be calculated simply by fitting our full dataset with and without the p(1700)

@ This does not properly account for uncertainties arising from the fact that we
only have one dataset
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SYSTEMATIC STUDIES - THE p(1700)

@ Ideally, the systematic associated with omitting the p(1700) from our nominal fit
would be calculated simply by fitting our full dataset with and without the p(1700)

@ This does not properly account for uncertainties arising from the fact that we
only have one dataset

@ In order to estimate an uncertainty on the changes in the fit parameters when
including the p(1700), we use the bootstrap method

@ The bootstrap technique allows one to estimate the uncertainty on parameters
calculated from a single dataset

@ This is done by sampling with replacement from the original dataset to generate N
“bootstrapped” datasets

@ If one fits to each dataset, then the covariances of the fit variables across all the
“bootstrapped” datasets provide an estimate of the variables’ uncertainties
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SYSTEMATIC STUDIES - THE p(1700) II

@ Bootstrapped estimate of the uncertainty on changes in U/I parameters between fits
with and without the p(1700), and the ratio of the mean change in the U/I
parameters across all bootstrapped fits to their estimated uncertainties.

Parameter TAU (AU) /oau
To 0.020 —0.36
I_ 0.022 0.41
= 0.42 —0.7
IR 0.7 0.28
1?_ 0.023 0.18
i 0.42 —0.11
e 0.7 0.26
m 0.9 —-1.0
by .
e 0.9 —0.6
Uy 0.029 0.29
Uy 0.017 0.5
vy 0.5 0.8
u—ghe 0.34 0.5
utym 0.21 -0.8
BaBar

Parameter TAU (AU) /oau
Ut Re 0.17 —0.8
U- 0.034 0.19
vt 0.05 0.15
Uldlm 0.44 —0.10
Ughe 0.36 0.5
UL’)I‘“ 0.16 0.5
UL’)R“ 0.17 0.05
U;fm 0.8 —0.27
U;v_Re 0.7 0.15
v 025  —0.22
UI;RC 0.28 —0.21
Uy 0.06 —0.5
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SYSTEMATIC STUDIES - THE p(1700) III

@ The changes in the fit parameters are small relative to the uncertainty on the fit
parameters and the estimated uncertainty on the changes in the fit parameters

@ Therefore, we choose the covariance matrix of the bootstrapped changes as our
systematic covariance matrix and don’t correct for any bias

@ A similar bootstrapped systematic study is performed to assess the systematic
uncertainty associated with a non-resonant component, and the effect is found to be
even smaller than for the p(1700) systematic
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FINAL F1T RESuLTS BABAR PRELIMINARY

@ From an on-resonance dataset containing 53,084 events, our multi-dimensional fit
extracts 2,940+100 signal events and 46,750+£220 continuum events.

@ Goodness of fit is demonstrated by the figure below, which contains overlaid plots of
the data used in the final fit and parameterized MC generated using the results of the
final fit and equivalent to 10 times the data sample.

@ The signal component of these plots is enhanced by a tight cut on the NN variable.
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FINAL U/I Fit RESULTS BABAR PRELIMINARY

@ The U and I parameter values extracted from our final fit are given in the tables
below along with stat and syst errors:

(o

new
stat

Parameter Final Fit Value

To —0.042 £ 0.038 £ 0.022
I_ —0.00 + 0.06 £ 0.03
' —0.61 +0.43 £ 0.46
IR 0.4+0.6+0.8

Iy 0.05 £ 0.06 £ 0.03
' —0.04 + 0.36 + 0.43
Iﬁg 0.5+0.5+0.7

i —0.5+0.7+0.9

e —0.6 £0.8+ 1.0

Uy 0.04 £ 0.05 + 0.03
Uy 0.225 + 0.030 + 0.020
v-g™ 0.53 £ 0.44 £ 0.52
vZghe 0.49 £ 0.35 + 0.37
Ui, —0.39 %+ 0.20 £ 0.24

BaBar

2007
Ostat

) =0.47

Parameter Final Fit Value

Ut Re —0.05 +0.17 + 0.18
o —0.27 £ 0.10 £ 0.06
ut 1.22 4 0.07 £ 0.05
vkt 0.10 + 0.29 £ 0.45
Ughe 0.30 & 0.32 + 0.38
v 0.41 £ 0.16 £ 0.17
Ugne 0.01 % 0.15 £ 0.19
v 11405408

U ke —0.5+0.5+0.8

v —0.07 £ 0.26 + 0.26
ubRe —0.19 + 0.25 + 0.33
Uy 0.25 + 0.09 + 0.07
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U/I ROBUSTNESS STUDY I

@ In order to judge the robustness with which the correct values of U and I parameters
can be extracted by the fit framework, a series of studies were performed

@ We perform fits to 25 toy MC datasets generated with expected “on-resonance”
dataset statistics and a shared set of known parameter values (with a = 89°), but
different random seeds

@ U and I parameter values are extracted in fits to each of these datasets and their
agreement with the generated values is assessed

BaBar 19 / 40




U/I ROBUSTNESS STUDY II

@ U/I Robustness Study Results:

<RMS #o Diff From Gen Val>= 1.17
<Avg #o Diff From Gen Val>= 0.04

Param RMS #o Avg #o Param RMS #o Avg #o
Diff From Diff From Diff From Diff From
Gen Val Gen Val Gen Val Gen Val
o 108 o2t Ut e 1.18 0.44
folis 1.24 —0.10 vz 1.06 0.01
IRe 1.29 0.09 Ut 0.95 0.12
1fr 1.01 —0.17 U;d““ 1.49 0.20
1w 1.30 0.17 Ughe 0.82 —0.08
IR 1.31 0.22 Ut Im 1.41 _0.13
m 1.03 —0.08 TR
The oo oo Ul 0.93 —0.03
- vy 1.08 0.33
U, 1.14 —0.12 T TRe
vt 1.09 0.29 U+;I 125 —0.29
U 1.62 0.19 vl 113 —0.14
U Re 199 —0.02 uRe 1.12 0.44
utm 1.50 062 Uy 0.88 0.08
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Quasi-Two-Bobpy FiT REsuLTS 1

@ The U and I parameters extracted from our final fit may be used to calculate the
values of quasi-two-body (Q2B) parameters often used in C'P-violation analyses:

—|At
ot F 1t/

IOy (AD = (14 pr)eT

X [1 4+ Qtag(S £ AS) sin(AmgAt)
—Qtag(C £ AC) cos(AmgAt)] .

with
vh-ut
Apr = ———,
vi+ut
and
c=(t+c)/2,
Ac=(ct —cy/e,
S=(ST+87)/2
AS = (ST —57)/2.
where

+ Uy - UD 20y 20
Cl=—"F,C =—7,8" =—, =1
UJr U™’ UJr vl
BaBar
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Quasi-Two-Bobpy FiT ResuLts 11

@ We can also use our fit results to extract the Q2B B? — p970 C P-violation
parameters and decay fraction:

U-
Coo = %,
Uo
21,
Soo = —»
Uog
+
U,
foo = .

e
vl +ut +ug

@ All eight of these Q2B parameters are extracted in a x? minimization using the full
stat+syst covariance matrix for the relevant U and I parameters:

Param ‘ Value Ostat Osyst

Aprn —0.100 0.029 0.021

C 0.016 0.059 0.036

AC 0.234 0.061 0.048

S 0.053 0.081 0.034 BaBar Preliminary
AS 0.054 0.082 0.039

Coo 0.19 0.23 0.15

Soo —0.37 0.34 0.20

foo 0.092 0.011 0.008
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Quasi-Two-Bobpy Fit ResurLts 111

@ The parameters Ayr and C can be transformed into the direct C'P-violation
parameters A,f{ and .A;;r where

At = F(EO S p at)—T(BY - ptx) _ _pr +C+ Apr AC
e F(EO — p~nt)+ T(BY — ptr—) 1+ AC+ ApnC
At = r(B° - ptr=)—=T(BY 5 p~xt) _ Apr —C— ApmAC

PT T (B = pta—) + I(BO — p—nt) 1—AC— AyC

@ These parameters are extracted in a 2-dimensional likelihood scan yielding:

— 0.05
Al = 0.09%008 £0.04,

- .04
Ao =—0.12 4+ 0.0810 ;.
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Quasi-Two-Bobpy FiT REsuLTs IV

@ In the 2D scan, the origin, corresponding to no direct C'P violation, lies on the 96.0%
confidence-level contour (Ax? = 6.42)

BABAR
Preliminary

T S S A A A AR SRR
-075  -050 -025 0 025 050 075 1

-+
Ay
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QUASI-Two-BoDYy ROBUSTNESS STUDY

@ We assess the robustness with which the Q2B parameters are extracted using the
same toy MC as used for the U/I robustness study

@ Q2B Robustness Study Results:

BaBar

Param v/ Variance/ (o) Avg #o
Diff From
Gen Val
A 0.94 —0.13
C 1.15 0.06
AC 0.94 0.04
S 1.11 0.03
AS 1.02 —0.20
Coo 1.15 ~0.10
Soo 1.13 0.23
foo 1.08 0.28
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o SCAN TECHNIQUE

@ Information about the unitarity triangle angle « is extracted in a likelihood scan

based on our final U/I fit results and full stat+syst covariance matrix

@ Perform a x2 minimization at each value of a from (0 — 180) degrees using

Xa scan = [Vdata _ Vscau:|T (Cdat,a)—l [V(lata _ vscan]

@ The variables that float in these fits are actually the tree and penguin amplitudes
which are related to the p amplitudes by:

AT

T. Miyashita BaBar

Tte i 4 pt
T e i@ 4 p~
T()e—icx + PO
T et 4 p~
TTetie 4 pt
T06+io¢ + PO
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FINAL FIT o« SCAN RESULTS

@ « scan results including stat+syst uncertainties:

BABAR
Preliminary

0 a (deg)

0 50 100 150

a Scan X2 Distribution
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FINAL FIT o« SCAN RESULTS

@ « scan results including stat+syst uncertainties:
@ (X is calculated as the integral of a x? distribution with 1 degree of freedom from
Ax? to o0)
@ X corresponds to what is commonly referred to as “1 — C.L.”
X Z

BABAR
Preliminary

1

BABAR
0.75 Preliminary

SEDZAN AN

0
% 50 100 150 @ (deg) 0 100 150

@ (deg)

a Scan ¥ Distribution
a Scan X2 Distribution (See robustness studies for interpretation)
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o SCAN ROBUSTNESS STUDIES |

@ In order to judge the robustness with which the correct value of o can be extracted by
the fit framework, a series of studies were performed

@ We perform « scans using the 25 toy MC datasets from the previous robustness
studies and assess the robustness with which the generated value of o (89°) is
extracted
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o SCAN ROBUSTNESS STUDIES 11

@ Example a Scan x2 Distributions (agen = 89°)
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@ Example o Scan ¥ Distributions (agen = 89°)

2 %
1 1
075 015
0s 0s
025 025
o 50 10 150 = 50 100 150 o6 100 150 oo
X by )
1 1 1
075 075 075
05 0s 0s
025 / 025 025
g » - o g o ™ : ' o et
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a SCAN ROBUSTNESS STUDIES IV

a Scan Mean #o Between
Peak Error Gen and Fit
Peaks
43 4.6 —9.0
44 5.0 —8.5
48 5.2 —8.2
49 4.6 —8.7
52 4.7 —8.2
53 12.8 —7.2
60 10.9 —2.1
74 6.5 —2.1
74 9.0 —2.9
75 8.8 —1.5
76 12.6 —1.7
80 5.6 —1.7
83 6.9 —0.94
84 5.9 —0.89
84 6.7 —0.72
87 7.1 —0.29
88 6.7 —0.14
89 8.4 0
91 9.2 0.22
91 4.5 0.43
92 6.9 0.48
94 6.3 0.89
112 5.3 3.9
115 5.4 4.6
124 21.7 2.3
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a SCAN ROBUSTNESS STUDIES V

@ Overview of scan results using sum of normalized 3 scans
z
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a SCAN ROBUSTNESS STUDIES V

@ Overview of scan results using sum of normalized 3 scans
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@ Overview of scan results using sum of normalized 3 scans
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@ The study indicates that with the current statistics, « scans may favor secondary
solutions
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a SCAN ROBUSTNESS STUDIES V

@ Overview of scan results using sum of normalized 3 scans

b b
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@ The study indicates that with the current statistics, « scans may favor secondary
solutions

@ When the signal to background ratio is increased, the fit becomes robust
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FINAL FIT o« SCAN RESULTS

@ Due to isospin relations, information about the charged B decays BT — pt:070:%

may be used to constrain our scan of «
@ (Red = isospin constrained scan / Dashed black = new scan from final fit)
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FINAL FIT o« SCAN RESULTS

@ Due to isospin relations, information about the charged B decays BT — pt:070:%

may be used to constrain our scan of «
@ (Red = isospin constrained scan / Dashed black = new scan from final fit)
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a SCAN COMPARISON

@ Interestingly, though our a scan disfavors the world average « value of 89°, it is in

good agreement with the existing CKMFitter world average for the pm mode
@ (Blue = world average / Dashed black = new scan from final fit)

BABAR

z
fmme
[ !
N Preliminary ! \ .
~ \ - BABAR
\ L
\ 075 Preliminary
\
\
\
\
05
ll"‘
#-%
025 Y
e \ \
_____ i \ N
O—-g — e
0 50 100 150 @ (deg) L 0 100
o Scan XZ Distribution

« Scan X Distribution

BaBar

34 / 40



SUMMARY

@ We have performed a time-dependent Dalitz plot analysis of the mode B? — (pm)? in
which we extract 26 U and I parameter values describing the physics involved
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SUMMARY

@ We have performed a time-dependent Dalitz plot analysis of the mode B? — (pm)? in
which we extract 26 U and I parameter values describing the physics involved

@ From these fit results, we extract standard Q2B parameters and find them to be
consistent with previously published BaBar and Belle results and robustly extracted

@ We also perform a 2D likelihood scan of the direct C' P-violation asymmetry
parameters for B — pEnF decays

@ We find the change in x2 between the minimum and the origin (corresponding
to no direct C P-violation) to be Ax? = 6.42.

@ Finally, we perform one-dimensional likelihood-scans of the unitarity triangle angle o
both with and without isospin constraints.

@ As indicated by our robustness studies , the extraction of a with our current
sample size is not robust.

@ Maximum likelihood estimators are known to be Gaussian in general only in the
limit of large data sets.

o This analysis would benefit greatly from increased sample sizes available at
high-luminosity experiments.
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CKMFITTER o« SCANS

@ CKMFitter overall world average and pm world average « scans

z --- B—pn (BABAR) X ==+ B—pp (WA) 3 Combined
wnteriz.  --- B—pm (Belle) —— CKM fit winteriz.  --- B—mw (WA) 1 CKM fit
3 B—pn (WA) B—pn (WA)
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@ Due to isospin relations, information about the charged B decays BT — pt:070:%

may be used to constrain our scan of «
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o SCAN - [SOSPIN CONSTRAINTS 1

Due to isospin relations, information about the charged B decays BT — pt:070:%
may be used to constrain our scan of «
@ These relations result in four “constraint” equations while introducing only two new
free parameters to the fit (the real and imaginary parts of a tree amplitude, T+0)

The charged B measurements of interest are the branching fractions and asymmetries:

0 0,2 —0,2
B(pta%) = (AT + 1A P ),
B(p%x ) = (A2 4140 Py,
At ) |A7012 — |aT0)2
nr A0 +]ATo]2
A(p07(+) ‘A07‘2 _ |AO+|2
|40= |2 4 |40+ 2"
where
A4%0 gA<Bi N piwo)y
D
0% q

= AT 5 0.
P
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a SCAN - [SOSPIN CONSTRAINTS 11

@ Due to isospin symmetry,

AT 4 A7 4240 = 720 (Z* +A7 + 220)
=v2(AT0 4+ A%
=V2e 2 A70 4 A0,

A0 _ A0t _ /5at — A7) = % [A*O — A% V24 - A+)] )

T. Miyashita BaBar 39 / 40



a SCAN - [SOSPIN CONSTRAINTS 11

@ Due to isospin symmetry,
At 4 A7 4240 = 2 (Z* +A7 + 220)
=v2(AT0 4+ A%
=V2e 2 A70 4 A0,
A0 _ A0t _ /5at — A7) = % [A*O — A% V24 - A+)] )

@ Based on these relations, we can parameterize the charged B amplitudes according to

Vv2AT0 = eTiept0 L pt  p—
V2AYt = ettt 4T qor® 7t _ pt 4 P,
V2A~0 = tiapt0y pt _ p—
V2A°T = ettt 4T 4or® —7t0 _ pt 4 P,

BaBar 39 / 40




o SCAN - [SOSPIN CONSTRAINTS 111

@ For each of the four amplitudes A*% and A%F, we can calculate the value based on
tree and penguin amplitudes or from measurements of charged B branching fractions
and asymmetries

@ Hence, for each of the four amplitudes, we add a gaussian constraint term to the x2

used in the « scan:
2
< ‘Aitcr. ‘ - |Ameas. | )
9| Ameas. |
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