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General Description

B0 → π+π−π0 CPV measurement

Dominated by B0 → ρ±π∓

Update of a 2007 BaBar analysis*

Extracts information about α, and
other parameters

* Phys. Rev. D 76, 012004 (2007)

VtdVtb*

VcdVcb*

α=ϕ2 β=ϕ1

γ=ϕ3

VudVub*

[2011 PDG]
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Motivation

Interference between the tree and
penguin modes and decays with and
without mixing allows sensitivity to α

A precision measurement of α serves to
further test the Standard Model
through sensitivity to new physics in
loops

The use of a full Dalitz plot analysis
reduces ambiguities found in analyses
which ignore the interference regions

Time-Dependent Dalitz Plot ρπ
measurement of α first proposed by
Snyder and Quinn*

* Phys. Rev. D 48, 2139 (1993)

Tree Diagram

Penguin Diagram
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Summary of Improvements

A number of improvements have been made relative to the 2007 analysis:

Increased dataset size by 25% (431 fb−1 vs. 346 fb−1 )
Improved tracking
Improved particle identification
Reoptimized multivariate discriminator cuts
Performed more rigorous study of ρ lineshape systematic uncertainties taking
into account correlations between parameters
And, importantly, performed robustness studies to assess the reliability with
which the true value of α can be extracted
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Time-Dependent Probability Distribution
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e
−|∆t|/τ

B0

4τ
B0

[
|A3π|

2
+ |A3π|

2 ∓
(
|A3π|

2 − |A3π|
2
)

cos(∆md∆t)±

2Im

[
q

p
A3πA

∗
3π

]
sin(∆md∆t)

]

A3π = f+A
+

+ f−A
−

+ f0A
0

for B
0 → π

+
π
−
π

0

A3π = f+A
+

+ f−A
−

+ f0A
0

for B
0 → π

+
π
−
π

0

fκ(m, θκ) ∝ Fρ(770)(m, θκ) + aρ′e
iφ
ρ′ Fρ(1450)(m, θκ)

T. Miyashita BaBar CPV in B0 → (ρπ)0 5 / 40



Example Toy MC Dalitz Plots

The Dalitz plot is transformed to cover
a unit square before fitting

m′ ≡ 1
π

arccos

(
2

m0−mmin
0

mmax
0 −mmin

0

− 1

)
θ′ ≡ 1

π
θ0

ρπ Toy Dalitz Plot (Left) And Square Dalitz Plot (Right)
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Kinematic Variables

Loose cuts are applied using beam
energy constraints

mES =

√(√
s

2

)2
− (p∗B)2

∆E = E∗B −
1
2

√
s

These variables are also included in the
fit
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Multivariate Discriminator Optimization

Discriminate signal from continuum (qq where
q = u, d, s, c) using Neural Net discriminator

4 Input variables provide sensitivity to event
topology

Trained using:

Signal MC with full detector simulation

Data collected below the B0B
0

threshold

The NN is used for a loose selection cut and as a
variable in the fit

Signal-Like Event Shape

Continuum Event Shape
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Dataset Overview

Data modeled using four components

Correctly reconstructed signal
Misreconstructed signal
26 B backgrounds
Continuum qq background

Fixed and initial parameter values are
obtained from fits to:

Fully simulated MC
(for signal and B-bkgs)

Data collected below the B0B
0

threshold
(for continuum)
A lower sideband in MES

(for continuum)

Correctly Reconstructed Signal MC
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Fitting

Data is fit using a multi-dimensional
extended maximum likelihood approach
with 6 input variables:
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Fitting

Data is fit using a multi-dimensional
extended maximum likelihood approach
with 6 input variables:

mES, ∆E
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Fitting

Data is fit using a multi-dimensional
extended maximum likelihood approach
with 6 input variables:

mES, ∆E, NN output
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Fitting

Data is fit using a multi-dimensional
extended maximum likelihood approach
with 6 input variables:

mES, ∆E, NN output
Time-Dependent SDP:
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Fitting

Data is fit using a multi-dimensional
extended maximum likelihood approach
with 6 input variables:

mES, ∆E, NN output
Time-Dependent SDP: ∆t
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Fitting

Data is fit using a multi-dimensional
extended maximum likelihood approach
with 6 input variables:

mES, ∆E, NN output
Time-Dependent SDP: ∆t,
(m′, θ′)
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Parameterization

There are several possible parameterizations for the decay probability

Each parameterization has advantages and drawbacks

Using magnitudes and phases (10 free parameters) leads to problems with
non-gaussian errors when magnitudes are small
Using real and imaginary parts of amplitudes leads to ambiguous solutions and
difficulty in extracting physics parameters like α
Using a more sophisticated parameterization (26 free parameters) reduces
ambiguities in the solution and provides gaussian errors, but solutions may be
unphysical

Ultimately, it was determined that the third parameterization (with 26 free
parameters) is the most practical option
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U/I Parameterization I

In our parameterization, 26 “U and I” parameters are calculated from the ρ
resonance amplitudes:

U±
κ = |Aκ|2 ± |Aκ|2

U±,Re(Im)
κσ = Re(Im)

[
AκAσ∗ ±AκAσ∗

]
Iκ = Im

[
A
κ
Aκ∗

]
IRe
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[
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]
IImκσ = Im
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A
κ
Aσ∗ +A

σ
Aκ∗

]
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U/I Parameterization II

The time-dependent probability distribution may then be expressed in terms of these
parameters as

|A±3π(∆t)|2 =
e
−|∆t|/τ
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Systematic Studies - The ρ(1700)

Ideally, the systematic associated with omitting the ρ(1700) from our nominal fit
would be calculated simply by fitting our full dataset with and without the ρ(1700)

This does not properly account for uncertainties arising from the fact that we
only have one dataset

In order to estimate an uncertainty on the changes in the fit parameters when
including the ρ(1700), we use the bootstrap method

The bootstrap technique allows one to estimate the uncertainty on parameters
calculated from a single dataset

This is done by sampling with replacement from the original dataset to generate N
“bootstrapped” datasets

If one fits to each dataset, then the covariances of the fit variables across all the
“bootstrapped” datasets provide an estimate of the variables’ uncertainties
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Systematic Studies - The ρ(1700) II

Bootstrapped estimate of the uncertainty on changes in U/I parameters between fits
with and without the ρ(1700), and the ratio of the mean change in the U/I
parameters across all bootstrapped fits to their estimated uncertainties.

Parameter σ∆U 〈∆U〉 /σ∆U
I0 0.020 −0.36
I− 0.022 0.41

IIm
−0 0.42 −0.7

IRe
−0 0.7 0.28

I+ 0.023 0.18

IIm
+0 0.42 −0.11

IRe
+0 0.7 0.26

IIm
+− 0.9 −1.0

IRe
+− 0.9 −0.6

U−0 0.029 0.29

U+
0 0.017 0.5

U
−,Im
−0 0.5 0.8

U
−,Re
−0 0.34 0.5

U
+,Im
−0 0.21 −0.8

Parameter σ∆U 〈∆U〉 /σ∆U

U
+,Re
−0 0.17 −0.8

U−− 0.034 0.19

U+
− 0.05 0.15

U
−,Im
+0 0.44 −0.10

U
−,Re
+0 0.36 0.5

U
+,Im
+0 0.16 0.5

U
+,Re
+0 0.17 0.05

U
−,Im
+− 0.8 −0.27

U
−,Re
+− 0.7 0.15

U
+,Im
+− 0.25 −0.22

U
+,Re
+− 0.28 −0.21

U−+ 0.06 −0.5
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Systematic Studies - The ρ(1700) III

The changes in the fit parameters are small relative to the uncertainty on the fit
parameters and the estimated uncertainty on the changes in the fit parameters

Therefore, we choose the covariance matrix of the bootstrapped changes as our
systematic covariance matrix and don’t correct for any bias

A similar bootstrapped systematic study is performed to assess the systematic
uncertainty associated with a non-resonant component, and the effect is found to be
even smaller than for the ρ(1700) systematic
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Final Fit Results BaBar Preliminary

From an on-resonance dataset containing 53,084 events, our multi-dimensional fit
extracts 2,940±100 signal events and 46,750±220 continuum events.
Goodness of fit is demonstrated by the figure below, which contains overlaid plots of
the data used in the final fit and parameterized MC generated using the results of the
final fit and equivalent to 10 times the data sample.
The signal component of these plots is enhanced by a tight cut on the NN variable.
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Final U/I Fit Results BaBar Preliminary

The U and I parameter values extracted from our final fit are given in the tables
below along with stat and syst errors:〈

σnew
stat/σ

2007
stat

〉
= 0.47

Parameter Final Fit Value
I0 −0.042± 0.038± 0.022
I− −0.00± 0.06± 0.03

IIm
−0 −0.61± 0.43± 0.46

IRe
−0 0.4± 0.6± 0.8

I+ 0.05± 0.06± 0.03

IIm
+0 −0.04± 0.36± 0.43

IRe
+0 0.5± 0.5± 0.7

IIm
+− −0.5± 0.7± 0.9

IRe
+− −0.6± 0.8± 1.0

U−0 0.04± 0.05± 0.03

U+
0 0.225± 0.030± 0.020

U
−,Im
−0 0.53± 0.44± 0.52

U
−,Re
−0 0.49± 0.35± 0.37

U
+,Im
−0 −0.39± 0.20± 0.24

Parameter Final Fit Value

U
+,Re
−0 −0.05± 0.17± 0.18

U−− −0.27± 0.10± 0.06

U+
− 1.22± 0.07± 0.05

U
−,Im
+0 0.10± 0.29± 0.45

U
−,Re
+0 0.30± 0.32± 0.38

U
+,Im
+0 0.41± 0.16± 0.17

U
+,Re
+0 0.01± 0.15± 0.19

U
−,Im
+− 1.1± 0.5± 0.8

U
−,Re
+− −0.5± 0.5± 0.8

U
+,Im
+− −0.07± 0.26± 0.26

U
+,Re
+− −0.19± 0.25± 0.33

U−+ 0.25± 0.09± 0.07
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U/I Robustness Study I

In order to judge the robustness with which the correct values of U and I parameters
can be extracted by the fit framework, a series of studies were performed

We perform fits to 25 toy MC datasets generated with expected “on-resonance”
dataset statistics and a shared set of known parameter values (with α = 89◦), but
different random seeds

U and I parameter values are extracted in fits to each of these datasets and their
agreement with the generated values is assessed
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U/I Robustness Study II

U/I Robustness Study Results:

<RMS #σ Diff From Gen Val>= 1.17
<Avg #σ Diff From Gen Val>= 0.04

Param RMS #σ Avg #σ
Diff From Diff From
Gen Val Gen Val

I0 1.05 0.27
I− 1.21 0.18

IIm
−0 1.24 −0.10

IRe
−0 1.29 0.09

I+ 1.01 −0.17

IIm
+0 1.30 0.17

IRe
+0 1.31 0.22

IIm
+− 1.03 −0.08

IRe
+− 1.09 −0.07

U−0 1.14 −0.12

U+
0 1.09 0.29

U
−,Im
−0 1.62 0.19

U
−,Re
−0 1.29 −0.02

U
+,Im
−0 1.50 −0.62

Param RMS #σ Avg #σ
Diff From Diff From
Gen Val Gen Val

U
+,Re
−0 1.18 0.44

U−− 1.06 0.01

U+
− 0.95 0.12

U
−,Im
+0 1.49 0.20

U
−,Re
+0 0.82 −0.08

U
+,Im
+0 1.41 −0.13

U
+,Re
+0 0.93 −0.03

U
−,Im
+− 1.08 0.33

U
−,Re
+− 1.25 −0.29

U
+,Im
+− 1.13 −0.14

U
+,Re
+− 1.12 0.44

U−+ 0.88 0.08
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Quasi-Two-Body Fit Results I

The U and I parameters extracted from our final fit may be used to calculate the
values of quasi-two-body (Q2B) parameters often used in CP -violation analyses:

f
ρ±π∓
Qtag

(∆t) = (1±Aρπ)
e−|∆t|/τ

4τ

×
[
1 +Qtag(S ±∆S) sin(∆md∆t)

−Qtag(C ±∆C) cos(∆md∆t)
]
.

with

Aρπ =
U+

+ − U
+
−

U+
+ + U+

−
,

and

C = (C+ + C−)/2,

∆C = (C+ − C−)/2,

S = (S+
+ S−)/2,

∆S = (S+ − S−)/2.

where

C+ =
U−+

U+
+

, C− =
U−−

U+
−
, S+

=
2I+

U+
+

, S− =
2I−

U+
−
,
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Quasi-Two-Body Fit Results II

We can also use our fit results to extract the Q2B B0 → ρ0π0 CP -violation
parameters and decay fraction:

C00 =
U−0
U+

0

,

S00 =
2I0

U+
0

,

f00 =
U+

0

U+
+ + U+

− + U+
0

.

All eight of these Q2B parameters are extracted in a χ2 minimization using the full
stat+syst covariance matrix for the relevant U and I parameters:

Param Value σstat σsyst

Aρπ −0.100 0.029 0.021
C 0.016 0.059 0.036
∆C 0.234 0.061 0.048
S 0.053 0.081 0.034
∆S 0.054 0.082 0.039
C00 0.19 0.23 0.15
S00 −0.37 0.34 0.20
f00 0.092 0.011 0.008

BaBar Preliminary
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Quasi-Two-Body Fit Results III

The parameters Aρπ and C can be transformed into the direct CP -violation

parameters A+−
ρπ and A−+

ρπ where

A+−
ρπ ≡

Γ(B
0 → ρ−π+)− Γ(B0 → ρ+π−)

Γ(B
0 → ρ−π+) + Γ(B0 → ρ+π−)

= −
Aρπ + C +Aρπ∆C

1 + ∆C +AρπC
,

A−+
ρπ ≡

Γ(B
0 → ρ+π−)− Γ(B0 → ρ−π+)

Γ(B
0 → ρ+π−) + Γ(B0 → ρ−π+)

=
Aρπ − C − Aρπ∆C

1−∆C − AρπC
.

These parameters are extracted in a 2-dimensional likelihood scan yielding:

A+−
ρπ = 0.09+0.05

−0.06 ± 0.04,

A−+
ρπ = −0.12± 0.08+0.04

−0.05.
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Quasi-Two-Body Fit Results IV

In the 2D scan, the origin, corresponding to no direct CP violation, lies on the 96.0%
confidence-level contour (∆χ2 = 6.42)
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Quasi-Two-Body Robustness Study

We assess the robustness with which the Q2B parameters are extracted using the
same toy MC as used for the U/I robustness study

Q2B Robustness Study Results:

Param
√

Variance/ 〈σ〉 Avg #σ
Diff From
Gen Val

Aρπ 0.94 −0.13
C 1.15 0.06
∆C 0.94 0.04
S 1.11 0.03
∆S 1.02 −0.20
C00 1.15 −0.10
S00 1.13 0.23
f00 1.08 0.28
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α Scan Technique

Information about the unitarity triangle angle α is extracted in a likelihood scan
based on our final U/I fit results and full stat+syst covariance matrix

Perform a χ2 minimization at each value of α from (0 – 180) degrees using

χ2
α scan =

[
V data − V scan

]T
(Cdata)−1

[
V data − V scan

]
The variables that float in these fits are actually the tree and penguin amplitudes
which are related to the ρ amplitudes by:

A+ = T+e−iα + P+

A− = T−e−iα + P−

A0 = T 0e−iα + P 0

A
+

= T−e+iα + P−

A
−

= T+e+iα + P+

A
0

= T 0e+iα + P 0
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Final Fit α Scan Results

α scan results including stat+syst uncertainties:
(Σ is calculated as the integral of a χ2 distribution with 1 degree of freedom from
∆χ2 to ∞)
Σ corresponds to what is commonly referred to as “1− C.L.”

α Scan χ2 Distribution
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Final Fit α Scan Results

α scan results including stat+syst uncertainties:
(Σ is calculated as the integral of a χ2 distribution with 1 degree of freedom from
∆χ2 to ∞)
Σ corresponds to what is commonly referred to as “1− C.L.”

α Scan χ2 Distribution

α Scan Σ Distribution
(See robustness studies for interpretation)
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α Scan Robustness Studies I

In order to judge the robustness with which the correct value of α can be extracted by
the fit framework, a series of studies were performed

We perform α scans using the 25 toy MC datasets from the previous robustness
studies and assess the robustness with which the generated value of α (89◦) is
extracted
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α Scan Robustness Studies II

Example α Scan χ2 Distributions (αgen = 89◦)
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α Scan Robustness Studies III

Example α Scan Σ Distributions (αgen = 89◦)
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α Scan Robustness Studies IV

α Scan Mean #σ Between
Peak Error Gen and Fit

Peaks
43 4.6 −9.0
44 5.0 −8.5
48 5.2 −8.2
49 4.6 −8.7
52 4.7 −8.2
53 12.8 −7.2
60 10.9 −2.1
74 6.5 −2.1
74 9.0 −2.9
75 8.8 −1.5
76 12.6 −1.7
80 5.6 −1.7
83 6.9 −0.94
84 5.9 −0.89
84 6.7 −0.72
87 7.1 −0.29
88 6.7 −0.14
89 8.4 0
91 9.2 0.22
91 4.5 0.43
92 6.9 0.48
94 6.3 0.89
112 5.3 3.9
115 5.4 4.6
124 21.7 2.3
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α Scan Robustness Studies V

Overview of scan results using sum of normalized Σ scans
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Α HdegL
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S

The study indicates that with the current statistics, α scans may favor secondary
solutions
When the signal to background ratio is increased, the fit becomes robust
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α Scan Robustness Studies V
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Final Fit α Scan Results

Due to isospin relations, information about the charged B decays B± → ρ±,0π0,±

may be used to constrain our scan of α
(Red = isospin constrained scan / Dashed black = new scan from final fit)

α Scan χ2 Distribution
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α Scan Comparison

Interestingly, though our α scan disfavors the world average α value of 89◦, it is in
good agreement with the existing CKMFitter world average for the ρπ mode
(Blue = world average / Dashed black = new scan from final fit)

α Scan χ2 Distribution α Scan Σ Distribution
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Summary

We have performed a time-dependent Dalitz plot analysis of the mode B0 → (ρπ)0 in
which we extract 26 U and I parameter values describing the physics involved

From these fit results, we extract standard Q2B parameters and find them to be
consistent with previously published BaBar and Belle results and robustly extracted

We also perform a 2D likelihood scan of the direct CP -violation asymmetry
parameters for B0 → ρ±π∓ decays

We find the change in χ2 between the minimum and the origin (corresponding
to no direct CP -violation) to be ∆χ2 = 6.42.

Finally, we perform one-dimensional likelihood-scans of the unitarity triangle angle α
both with and without isospin constraints.

As indicated by our robustness studies , the extraction of α with our current
sample size is not robust.
Maximum likelihood estimators are known to be Gaussian in general only in the
limit of large data sets.
This analysis would benefit greatly from increased sample sizes available at
high-luminosity experiments.
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BACKUP SLIDES
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CKMFitter α Scans

CKMFitter overall world average and ρπ world average α scans
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α Scan - Isospin Constraints I

Due to isospin relations, information about the charged B decays B± → ρ±,0π0,±

may be used to constrain our scan of α

These relations result in four “constraint” equations while introducing only two new
free parameters to the fit (the real and imaginary parts of a tree amplitude, T+0)

The charged B measurements of interest are the branching fractions and asymmetries:

B(ρ
+
π

0
) = c(|A+0|2 + |A−0|2)τ

B+ ,

B(ρ
0
π

+
) = c(|A0+|2 + |A0−|2)τ

B+ ,

A(ρ
+
π

0
) =

|A−0|2 − |A+0|2

|A−0|2 + |A+0|2
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α Scan - Isospin Constraints I
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α Scan - Isospin Constraints II

Due to isospin symmetry,

A
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+ A
−
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= e
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−
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√
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√
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)
]
.

Based on these relations, we can parameterize the charged B amplitudes according to
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α Scan - Isospin Constraints III

For each of the four amplitudes A±0 and A0±, we can calculate the value based on
tree and penguin amplitudes or from measurements of charged B branching fractions
and asymmetries

Hence, for each of the four amplitudes, we add a gaussian constraint term to the χ2

used in the α scan:

(
|Aiter.| − |Ameas.|

σ|Ameas.|

)2
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