

${\it B} ightarrow {\it D}^{(*)} au u$ at Belle

CKM Workshop 2012

Daniel Zander | September 30th, 2012

INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK, KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT)

Contents

Principle

Tagging

- $\mathcal{B}(B^0 o D^{*-} au^+
 u_ au)$ Inclusive Tagging
- ${\cal B}(B^+ o ar D^{(*)0} au^+
 u_ au)$ Inclusive Tagging
- $B \rightarrow D^{(*)} \tau \nu_{\tau}$, hadronic tagging

4 Conclusion

- Conclusion
- Outlook
- KEK & Belle

Principle O Measurements

Conclusion

Motivation

Charged Higgs Effects

Observables:

$$R = rac{\mathcal{B}(B o D au
u_{ au})}{\mathcal{B}(B o D \ell
u_{\ell})} \stackrel{SM}{pprox} 0.297 \qquad R^* = rac{\mathcal{B}(B o D^* au
u_{ au})}{\mathcal{B}(B o D^* \ell
u_{\ell})} \stackrel{SM}{pprox} 0.251$$

Motivation Principle $\bullet \circ$ \circ Daniel Zander – $B \rightarrow D^{(*)} \tau \nu$ at Belle Measurements

Conclusion

3/42

Effects of Charged Higgs

MSSM with Minimal Flavor Violation:

$$g_{S} = g_{P} = \frac{m_{B}^{2}}{M_{H^{+}}^{2}} \frac{\tan^{2}\beta}{(1 + \tilde{\epsilon}_{0} \tan\beta)(1 + \epsilon_{\tau} \tan\beta)}$$

Nierste, Trine, Westhoff, arXiv:0801:4938

Motivation Principle $\circ \bullet$ \circ Daniel Zander $-B \rightarrow D^{(*)} \tau \nu$ at Belle Measurements

Missing Neutrinos

Exemplary decay: $B^0 \rightarrow D^- \tau^+ (\rightarrow e^+ \nu_e \bar{\nu}_{\tau}) \nu_{\tau}$

Problem: Three neutrinos in the final state

- $|B
 ightarrow D au (
 ightarrow \ell
 u_\ell
 u_ au)
 u_ au |$ signal contains three-neutrino system with unknown momentum.
- Without further information ...
 - ... no useful kinematic constraints to obtain a clean signal
 - ... not distinguishable from $B \rightarrow D\ell \nu_{\ell}$

Solution: Tagging

Motivation

Tagging Methods

Hadronic Tagging

- Full Reconstruction of as many purely hadronic $b \rightarrow c$ decays as reasonably possible.
- Tag Side, then Signal Side
- Efficiency \sim 0.1 0.2%
- Combined with signal side: Usually manageable background levels

Inclusive Tagging

- Signal Side, then Tag Side
- Remaining particles in the detector form the tag side B_{tag}
- Efficiency typically larger than for hadronic tagging
- Much higher background levels

Motivation Principle $\circ\circ$ Principle \bullet Daniel Zander – $B \to D^{(*)} \tau \nu$ at Belle Measurements

Conclusion

Overview

Tagging	Measurement	Data Sample
Inclusive	${\cal B}(B^0 o D^{*-} au^+ u_ au)$	$535 imes 10^6~Bar{B}$
Inclusive	${\cal B}({\it B}^+ o \overline{\it D}^0 au^+ u_ au)$	$657 imes10^{6}$ $Bar{B}$
Inclusive	${\cal B}(B^+ o \overline{D}^{*0} au^+ u_ au)$	$657 imes10^{6}$ $Bar{B}$
Hadronic	<i>R</i> , <i>R</i> *	$657 imes10^{6}$ $Bar{B}$
Hadronic	$B ightarrow D au u_{ au}$	$657 imes 10^6 \ Bar{B}$
Hadronic	$B ightarrow D^* au u_ au$	$657 imes 10^6~Bar{B}$

Motivation Principle $\circ\circ$ \circ Daniel Zander – $B \rightarrow D^{(*)} \tau \nu$ at Belle Measurements

Conclusion

September 30th, 2012

Overview

Tagging	Measurement	Data Sample
Inclusive	${\cal B}(B^0 o D^{*-} au^+ u_ au)$	$535 imes 10^6 \ Bar{B}$
Inclusive	${\cal B}({\it B}^+ o \overline{\it D}^0 au^+ u_ au)$	$657 imes10^{6}$ $Bar{B}$
Inclusive	${\cal B}(B^+ o \overline{D}^{*0} au^+ u_ au)$	$657 imes10^6~Bar{B}$
Hadronic	<i>R</i> , <i>R</i> *	$657 imes10^{6}$ $Bar{B}$
Hadronic	$B ightarrow D au u_{ au}$	$657 imes10^{6}$ $Bar{B}$
Hadronic	$B ightarrow D^* au u_ au$	$657 imes 10^6~Bar{B}$

Motivation Pri $\circ\circ$ \circ \circ Daniel Zander – $B \rightarrow D^{(*)} \tau \nu$ at Belle

Principle O

Measurements

Conclusion

$${\cal B}({\it B}^{0} o {\it D}^{*-} au^+
u_ au)$$
 - Inclusive Tagging

Description

- Inclusive tagging
- 535 imes 10⁶ $Bar{B}$ pairs
- Channels:

$$\begin{array}{l} \mathbf{B}^{0} \rightarrow D^{*-} \tau^{+} \nu_{\tau} \\ \mathbf{D}^{*-} \rightarrow \bar{D}^{0} \pi^{-} \\ \mathbf{D}^{0} \rightarrow \mathbf{K}^{-} \pi^{+} \text{ (and } D^{0} \rightarrow \mathbf{K}^{-} \pi^{+} \pi^{0} \text{ for electron mode)} \\ \mathbf{\tau}^{+} \rightarrow \mathbf{e}^{+} \nu_{\theta} \bar{\nu}_{\tau} \\ \mathbf{\tau}^{+} \rightarrow \pi^{+} \bar{\nu}_{\tau} \end{array}$$

Reference: A. Matyja, M. Rozanska et al. (Belle Collaboration), Phys. Rev. Lett. 99, 191807 (2007).

Motivation Principle $\circ\circ$ O Daniel Zander – $B \rightarrow D^{(*)} \tau \nu$ at Belle Measurements ••••••• Conclusion

9/42

$${\cal B}({\it B}^{0} o {\it D}^{*-} au^+
u_ au)$$
 - Inclusive Tagging

Inclusive Tagging

Tag side improvement: zero total event charge, no (additional) μ/e/p, residual *E* in ECL< 0.35 GeV and N_{π⁰andγ} < 5 (on tag side)

Daniel Zander – $B \rightarrow D^{(*)} \tau \nu$ at Belle

 ${\cal B}(B^0 o D^{*-} au^+
u_ au)$ - Inclusive Tagging

Results

- Signal: Crystal Ball line shape (CB)
- Background: ARGUS (combinatorial BG) and CB (peaking $B^0 \rightarrow D^{*-}e^+\nu_e$ events)

Motivation \Pr_{0} Obtained Zander – $B \rightarrow D^{(*)} \tau \nu$ at Belle

Principle O Measurements

Conclusion

September 30th, 2012

${\cal B}({\it B}^{0} o {\it D}^{*-} au^+ u_ au)$ - Inclusive Tagging

Subchannel	N_s	Nobs	$\mathcal{B}(\%)$	Σ
$\overline{\bar{D}^0} \to K^+ \pi^-, \ \tau^+ \to e^+ \nu_e \bar{\nu}_{\tau}$	$19.5^{+5.8}_{-5.0}$	40	$2.44_{-0.65}^{+0.74}$	5.0 <i>o</i>
$\bar{D^0} \rightarrow K^+ \pi^- \pi^0, \ \tau^+ \rightarrow e^+ \nu_e \bar{\nu}_\tau$	$11.9^{+6.0}_{-5.2}$	60	$1.69\substack{+0.84 \\ -0.74}$	2.6σ
$\bar{D}^0 \rightarrow K^+ \pi^-, \ \tau^+ \rightarrow \pi^+ \bar{\nu}_{\tau}$	$29.9\substack{+10.0\\-9.1}$	148	$2.02\substack{+0.68 \\ -0.61}$	3.8σ
Combined	60^{+12}_{-11}	248	$2.02\substack{+0.40 \\ -0.37}$	6.7 <i>o</i>

Systematic Uncertainties

- Parametrization of signal and background
- B_{tag} efficiency
- Tracking, neutral reconstruction and PID efficiency

• Intermediate branching fraction $(\mathcal{B}(D^{*-} \to \overline{D^0}\pi^-) \times \mathcal{B}(\overline{D^0} \to i) \times \mathcal{B}(\tau^+ \to j))$

• Sum: 18.5% $\Rightarrow \Sigma = 5.2\sigma$

Motivation Principle $\circ\circ$ \circ Daniel Zander – $B \rightarrow D^{(*)} \tau \nu$ at Belle First observation of

Measurements

Conclusion

September 30th, 2012

Overview

Tagging	Measurement	Data Sample
Inclusive	${\cal B}(B^0 o D^{*-} au^+ u_ au)$	$535 imes 10^6~Bar{B}$
Inclusive	${\cal B}({\it B}^+ o \overline{\it D}^0 au^+ u_ au)$	$657 imes10^6~Bar{B}$
Inclusive	${\cal B}(B^+ o \overline{D}^{*0} au^+ u_ au)$	$657 imes 10^6 \ Bar{B}$
Hadronic	<i>R</i> , <i>R</i> *	$657 imes10^{6}$ $Bar{B}$
Hadronic	$B ightarrow D au u_{ au}$	$657 imes10^{6}$ $Bar{B}$
Hadronic	$B ightarrow D^* au u_ au$	$657 imes 10^6~Bar{B}$

Motivation Principle $\circ\circ$ \circ Daniel Zander – $B \rightarrow D^{(*)} \tau \nu$ at Belle Measurements

Conclusion

$${\cal B}({\it B}^+ o ar D^{(*)0} au^+
u_ au)$$
 - Inclusive Tagging

Description

- Inclusive tagging
- 657 \times 10⁶ $B\bar{B}$ pairs
- Channels:

$$\begin{array}{l} \mathbf{B}^{+} \rightarrow \bar{D}^{0} \tau^{+} \nu_{\tau} \\ \mathbf{B}^{+} \rightarrow \bar{D}^{*0} \tau^{+} \nu_{\tau} \\ \mathbf{D}^{*0} \rightarrow D^{0} \pi^{0} \\ \mathbf{D}^{0} \rightarrow (K^{-} \pi^{+}), (K^{-} \pi^{+} \pi^{0}) \\ \mathbf{\tau}^{+} \rightarrow \mathbf{e}^{+} \nu_{e} \bar{\nu}_{\tau} \\ \mathbf{\tau}^{+} \rightarrow \mu^{+} \nu_{\mu} \bar{\nu}_{\tau} \\ \mathbf{\tau}^{+} \rightarrow \pi^{+} \bar{\nu}_{\tau} \end{array}$$

Reference: A. Bozek, M. Rozanska et al. (Belle Collaboration), Phys. Rev. D 82, 072005(R) (2010).

Motivation Daniel Zander – $B \rightarrow D^{(*)} \tau \nu$ at Belle

Principle

Measurements

14/42

${\cal B}({\it B}^+ o ar D^{(*)0} au^+ u_ au)$ - Inclusive Tagging

- **Tag side improvement:** zero total event charge, no (additional) $\mu/e/p$, residual *E* in ECL< 0.35(0.25)(0.20) GeV (depending on the mode), $N_{\pi^0 \text{and}\gamma} < 6$ and $N_{\gamma} < 3$ (on tag side), < 4 non-IP tracks (π mode), depending on mode also no K_L .
- Variables for signal side:

•
$$E_{\text{miss}} = E_{\text{beam}} - E_{D^{(*)0}} - E_{e/d_{\tau}}$$

• $E_{\text{vis}} = \sum E(\text{particle}_i)$
• $M_{\text{miss}}^2 = E_{\text{miss}}^2 - (\vec{p}_{\text{sig}} - \vec{p}_{D^{(*)0}} - \vec{p}_{d_{\tau}})^2$
• $X_{\text{mis}} = (E_{\text{miss}} - |\vec{p}_{D^*} + \vec{p}_{e/\pi}|) / \sqrt{E_{\text{beam}}^2 - m_{B^0}^2}$

- $E_{\rm vis} > 8.3 8.5 \text{ GeV}, E_{\rm miss} > 1.5 1.9 \text{ GeV}, X_{\rm mis} > 2.0 2.75 \text{ GeV}$ (leptonic τ -decays), $X_{\rm mis} > 1.0 - 1.5 \text{ GeV}$ (pionic τ -decays), neutrino angle (calculated from $M_{\rm miss}^2$ and q^2) in [-1, 1] and $q^2 < 9.5 \text{ GeV}^2$
- BG estimation by simultaneous fits to M_{tag}, ΔE_{tag}, E_{D_τ}, X_{mis}, E_{vis}, q² and R₂ (ratio of FWM)

Motivation Principle \circ Principle \circ Daniel Zander – $B \rightarrow D^{(*)} \tau \nu$ at Belle Measurements

Conclusion

15/42

 ${\cal B}({\it B}^+ o ar{{\it D}}^{(*)0} au^+
u_ au)$ - Inclusive Tagging

$B^+ ightarrow ar{D}^0 au^+ (ightarrow e^+ u_e ar{ u}_ au) u_ au$ sample

Signal (blank) BG (shaded)

Motivation Principle Daniel Zander – $B \rightarrow D^{(*)} \tau \nu$ at Belle

Measurements Conclusion

16/42

 ${\cal B}({\it B}^+ o ar{{\it D}}^{(*)0} au^+
u_ au)$ - Inclusive Tagging

$B^+ \rightarrow \overline{D}^{*0} \overline{\tau}^+ (\rightarrow e^+ \nu_e \overline{\nu}_{\tau}) \overline{\nu}_{\tau}$ sample

Signal (blank) BG (shaded)

Motivation Principle $\circ\circ$ Planiel Zander – $B \rightarrow D^{(*)} \tau \nu$ at Belle

Measurements

Conclusion

September 30th, 2012

 ${\cal B}({\it B}^+ o ar D^{(*)0} au^+
u_ au)$ - Inclusive Tagging

Karbruhe Institute of Technology

Results

Mode	N_s	$\mathcal{B}(\%)$	$\Sigma(\sigma)$
$\bar{D}^{*0}\tau^+\nu_\tau$	$446^{+58}_{-56}(226)$	$2.12^{+0.28}_{-0.27}$	8.8
$\bar{D}^0 \tau^+ \nu_{\tau}$	$146^{+42}_{-41}(15)$	0.77 ± 0.22	3.6

Numbers in parantheses: $D(D^*)$ signal events extracted from $D^*(D)$ sample.

Source	$\bar{D}^{*0}\tau^+\nu_\tau$	$\bar{D}^0 \tau^+ \nu_{\tau}$
$N_{B\bar{B}}$	$\pm 1.4\%$	$\pm 1.4\%$
Reconstruction of B_{tag} and B_{sig}	$\pm 12.9\%$	$\pm 12.8\%$
Lepton-id and signal selection	$^{+1.5}_{-1.6}\%$	$^{+4.4}_{-4.5}\%$
Shape of the signal PDF's	$\pm 2.5\%$	$\pm 6.0\%$
Comb. and peaking backgrounds	$\pm 3.3\%$	$\pm 2.7\%$
Fitting procedure	$\pm 0.8\%$	$\pm 1.5\%$
Total	$\pm 13.9\%$	$\pm 15.2\%$

 $\Sigma = 8.1\sigma(D^*) \text{ and } \Sigma = 3.5\sigma(D)$ First evidence for $B^+ \rightarrow \overline{D}^0 \tau^+ \nu_{\tau}!$

Measurements Co

Conclusion

September 30th, 2012

19/42

Motivation Principle \circ \circ \circ Daniel Zander $-B \rightarrow D^{(*)} \tau \nu$ at Belle

Overview

Tagging	Measurement	Data Sample
Inclusive	${\cal B}(B^0 o D^{*-} au^+ u_ au)$	$535 imes 10^6~Bar{B}$
Inclusive	${\cal B}({\it B}^+ o \overline{\it D}^0 au^+ u_ au)$	$657 imes10^{6}$ $Bar{B}$
Inclusive	${\cal B}(B^+ o \overline{D}^{*0} au^+ u_ au)$	$657 imes 10^6 \ Bar{B}$
Hadronic	<i>R</i> , <i>R</i> *	$657 imes10^6~Bar{B}$
Hadronic	$B ightarrow D au u_{ au}$	$657 imes 10^6 \ Bar{B}$
Hadronic	$B ightarrow D^* au u_ au$	$657 imes10^6~Bar{B}$

Motivation Principle $\circ\circ$ \circ Daniel Zander – $B \rightarrow D^{(*)} \tau \nu$ at Belle

Measurements

Conclusion

September 30th, 2012

Description

- Hadronic tagging
- Efficiency ~ 0.1%
- 657 × 10⁶ *B***B** pairs
- Channels:

$$\begin{array}{l} \mathbf{B}^{0} \to D^{-}\tau^{+}\nu_{\tau} , \ \mathbf{B}^{0} \to D^{*-}\tau^{+}\nu_{\tau} \\ \mathbf{B}^{+} \to \overline{D}^{0}\tau^{+}\nu_{\tau} , \ \mathbf{B}^{+} \to \overline{D}^{*0}\tau^{+}\nu_{\tau} \\ \mathbf{D}^{*0} \to D^{0}\pi^{0}, D^{0}\gamma \text{ and } D^{*+} \to D^{+}\pi^{0}, D^{0}\pi^{+} \\ \mathbf{D}^{0} \to K^{-}\pi^{+}, K^{-}\pi^{+}\pi^{0}, K^{-}\pi^{+}\pi^{+}\pi^{-}, K^{-}\pi^{+}\pi^{+}\pi^{-}\pi^{0}, \\ \mathbf{K}^{0}_{S}\pi^{0}, \mathbf{K}^{0}_{S}\pi^{+}\pi^{-}, \mathbf{K}^{0}_{S}\pi^{+}\pi^{-}\pi^{0} \\ \mathbf{D}^{-} \to K^{+}\pi^{-}\pi^{-}, K^{+}\pi^{-}\pi^{-}\pi^{0}, \mathbf{K}^{0}_{S}\pi^{-} \\ \mathbf{\tau}^{+} \to \mathbf{e}^{+}\nu_{e}\bar{\nu}_{\tau}, \tau^{+} \to \mu^{+}\nu_{\mu}\bar{\nu}_{\tau} \end{array}$$

Reference: I. Adachi et al. (Belle Collaboration), arXiv:0910.4301.

Motivation Principle $\circ \circ$ \circ \circ Daniel Zander – $B \rightarrow D^{(*)} \tau \nu$ at Belle

ciple

Measurements

Conclusion

Optimization of the Selection

- Cut on P^{in B frame}
- Requirement of no additional tracks and π^0

$B o D\ell u_\ell$ and $B o D^* \ell u_\ell$ components . . .

- are used to calibrate the background MC simulation
- are used to normalize the extracted signal yields

Fitting variables ...

•
$$M_{\text{miss}}^2 = \left[p(\text{Beam}) - \left(p(B_{\text{tag}}) + p(D^{(*)}) + p(\ell) \right) \right]^2$$

• $E_{\text{extra}}^{\text{ECL}} = \sum E_{\text{Calor.}} - \left(\sum E_{\text{tag}} + \sum E_{\text{signal}} \right)$

Motivation Principle \circ Principle \circ Daniel Zander – $B \rightarrow D^{(*)} \tau \nu$ at Belle Measurements

Conclusion

22/42

Daniel Zander – $B \rightarrow D^{(*)} \tau \nu$ at Belle

September 30th, 2012

Principle

Results

Quantity	$\overline{D}{}^{0}\tau^{+}\nu$	$\overline{D}^{*0}\tau^+\nu$
$\overline{N(\overline{D}^{(*)}\tau^+\nu)}$	$98.6^{+26.3}_{-25.0}$	$99.8^{+22.2}_{-21.3}$
$\epsilon(\overline{D}^{(*)}\tau^+\nu)$ [%]	6.20 ± 0.08	3.86 ± 0.08
R[%]	$70.2 \begin{array}{c} +18.9 \\ -18.0 \end{array} \begin{array}{c} +11.0 \\ -9.1 \end{array}$	$46.8 \begin{array}{c} +10.6 \\ -10.2 \end{array} \begin{array}{c} +6.2 \\ -7.2 \end{array}$
$\Sigma(\Sigma_{stat})$	3.8(4.4)	3.9(5.2)
<i>B</i> [%]	$1.51 \ {}^{+0.41}_{-0.39} \ {}^{+0.24}_{-0.19} \ \pm \ 0.15$	$3.04 {}^{+0.69}_{-0.66} {}^{+0.40}_{-0.47} \pm 0.22$
Quantity	$D^- \tau^+ \nu$	$D^{*-}\tau^+\nu$
$\overline{N(\overline{D}{}^{(*)}\tau^+\nu)}$	$17.2_{-6.9}^{+7.7}$	$25.0^{+7.2}_{-6.3}$
$\epsilon(\overline{D}^{(*)}\tau^+\nu)$ [%]	6.86 ± 0.09	2.09 ± 0.04
R[%]	$47.6 \begin{array}{c} +21.6 \\ -19.3 \end{array} \begin{array}{c} +6.3 \\ -5.4 \end{array}$	$48.1 \begin{array}{c} +14.0 \\ -12.3 \end{array} \begin{array}{c} +5.8 \\ -4.1 \end{array}$
$\Sigma(\Sigma_{stat})$	2.6(2.8)	4.7(5.9)
$\mathcal{B}[\%]$	$1.01 \ {}^{+0.46}_{-0.41} \ {}^{+0.13}_{-0.11} \ \pm \ 0.10$	$2.56 \ ^{+0.75}_{-0.66} \ ^{+0.31}_{-0.22} \ \pm \ 0.10$

Motivation Pri \circ \circ \circ \circ \circ \circ \circ $Daniel Zander - B \rightarrow D^{(*)}\tau\nu$ at Belle Measurements

Conclusion

September 30th, 2012

Systematic Errors

Source	$\overline{D}{}^{0}\tau^{+}\nu[\%]$	$\overline{D}{}^{*0}\tau^+\nu[\%]$	$D^-\tau^+\nu[\%]$	$D^{*-}\tau^+\nu[\%]$
$M_{\rm miss}^2$ shape	+9.10/-7.89	+9.86/-10.7	+6.39/-5.78	+5.80/-6.12
$E_{\text{extra}}^{\text{ECL}}$ shape	+10.6/-7.58	+7.01/-9.73	+9.03/-7.27	+9.84/-4.97
$D^{**}\ell\nu$	+0.35/-0.41	+0.75/-0.02	+4.50/-2.56	+0.58/-0.28
$D \leftrightarrow D^*$ cross-feed	+7.05/-6.86	+5.12/-5.34	+5.77/-6.01	+3.48/-3.37
$\mathcal{B}(\tau \to \ell \nu \nu)$	± 0.3	± 0.3	± 0.3	± 0.3
Total	+15.7/-12.9	+13.2/-15.4	+13.3/-11.4	+12.0/-8.58

Measurements

Conclusion

26/42

Tagging	Measurement	Result
Inclusive	${\cal B}(B^0 o D^{*-} au^+ u_ au)$	$(2.02^{+0.40}_{-0.37}\pm 0.37)\%$
Inclusive	${\cal B}(B^+ o \overline{\it D}^0 au^+ u_ au)$	$(0.77\pm0.22\pm0.12)\%$
Inclusive	$\mathcal{B}(B^+ o \overline{D}^{*0} au^+ u_ au)$	$(2.12^{+0.28}_{-0.27}\pm 0.29)\%$
Hadronic	${\it R}({\it D}^0)$, ${\it R}({\it D}^+)$	$0.70^{+0.19+0.11}_{-0.18-0.9}, 0.48^{+0.22+0.06}_{-0.19-0.05}$
Hadronic	$\mathit{R}(\mathit{D}^{*0})$, $\mathit{R}(\mathit{D}^{*+})$	$0.47\substack{+0.11+0.06\\-0.10-0.07}, 0.48\substack{+0.14+0.06\\-0.12-0.04}$
Hadronic	$B^+ ightarrow \overline{D}^0 au^+ u_ au$	$(1.51^{+0.41+0.24}_{-0.39-0.19}\pm 0.15)\%$
Hadronic	$B^+ ightarrow \overline{D}^{*0} au^+ u_ au$	$(3.04^{+0.69+0.40}_{-0.66-0.47}\pm 0.22)\%$
Hadronic	$B^0 ightarrow D^- au^+ u_ au$	$(1.01^{+0.46+0.13}_{-0.41-0.11}\pm 0.10)\%$
Hadronic	$B^0 ightarrow D^{*-} au^+ u_ au$	$(2.56^{+0.75+0.31}_{-0.66-0.22}\pm 0.10)\%$

Motivation Principle \circ Principle \circ Daniel Zander – $B \rightarrow D^{(*)} \tau \nu$ at Belle Measurements

Dotted Line: Current WA, Yellow Bands: Uncertainty on current WA

Motivation Principle $\circ \circ$ \circ \circ Daniel Zander – $B \rightarrow D^{(*)} \tau \nu$ at Belle

Measurements

Conclusion •••••••••

Motivation Principle $\circ\circ$ Principle \circ Daniel Zander – $B \rightarrow D^{(*)} \tau \nu$ at Belle Measurements

Conclusion

29/42

The branching ratios

$$\begin{array}{l} \mathbf{B}^{+} \rightarrow \overline{D}^{0} \tau^{+} \nu_{\tau} \\ \mathbf{B}^{+} \rightarrow \overline{D}^{*0} \tau^{+} \nu_{\tau} \\ \mathbf{B}^{0} \rightarrow D^{-} \tau^{+} \nu_{\tau} \\ \mathbf{B}^{0} \rightarrow D^{*-} \tau^{+} \nu_{\tau} \end{array}$$

are measured.

- The ratios $R(D^0)$, $R(D^{*0})$, $R(D^+)$ and $R(D^{*+})$ have been measured.
- The current precision does not allow to rule out the Standard Model yet.
- With more statistics, the result may be improved further.

Outlook

Description

- Improved hadronic tagging
- Efficiency \sim 0.1% $\rightarrow \sim$ 0.2% (see M. Feindt et al., Nucl. Instr. and Meth. A (2011), doi:10.1016/j.nima.2011.06.008)
- 657 ightarrow 771 imes 10⁶ $Bar{B}$ pairs
- 2D signal extraction: M²_{miss} and the output of a Neural Network with negligible correlations.
- Reference: Work in progress, no publication yet.

Principle O

Measurements

Conclusion

BACKUP

KEK & Belle

KEK-B

Motivation Principle Daniel Zander – $B \rightarrow D^{(*)} \tau \nu$ at Belle

Measurements

Conclusion

September 30th, 2012

Integrated Luminosity

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

Motivation Principle \circ Principle \circ Daniel Zander – $B \rightarrow D^{(*)} \tau \nu$ at Belle Conclusion

September 30th, 2012

Effects of Charged Higgs

Decay kinematics

Described by

$$w = \left(1 + r^2 - \frac{q^2}{m_B^2}\right)/r^2$$
, with $r = m_D/m_B$

Motivation Principle \circ Principle \circ Daniel Zander – $B \rightarrow D^{(*)} \tau \nu$ at Belle $B^+
ightarrow ar{D}^{(*)0} au^+
u_{ au}$

Phys. Rev. D82, 072005(R) (2010)

Inclusive Tagging

Motivation Principle $\circ\circ$ Planiel Zander – $B \rightarrow D^{(*)} \tau \nu$ at Belle $B^+
ightarrow ar{D}^{(*)0} au^+
u_ au$

Phys. Rev. D82, 072005(R) (2010)

Inclusive Tagging

Motivation Principle \circ Principle \circ Daniel Zander – $B \rightarrow D^{(*)} \tau \nu$ at Belle Measurements

 $B^+
ightarrow ar{D}^{(*)0} au^+
u_ au$

Phys. Rev. D82, 072005(R) (2010)

Inclusive Tagging 0.35 (a) (b) (c) 0.3 0.3 0.25 0.25 0.8 0.2 0.2 0.6 0.15 0.15 0.4 0.1 0.1 0.2 0.05 0.05 MŴ² |ĜeV²/c⁴ $M_{-1}^{4} = {}^{2} [GeV^{2}/c^{4}]$ 0.8 (d) (e) (f) 0.6 (g) 0.6 0.1 0.4 0.5 0.5 0.6 0.5 0.4 0.3 0.4 0.4 0.3 0.3 0.2 0.3 0.2 0.2 0.2 0.1 0.1 0.1 2 2.5 3 3. E_{mis} [GeV] 9.5 10 10.5 1 E_{vis} [GeV] 1 1.2 1.4 1.6 1.8 2 2.2 2.4 E_[GeV] -6 -4 -2 0 2 4 21Geθ2/c MW²-M.....²-M. 21Geθ2/c $B^+ ightarrow ar{D}^{*0} au^+ (ightarrow \pi^+ ar{ u}_{ au}) u_{ au}$ Signal (blank) BG (shaded)

Motivation Principle \circ Principle \circ Daniel Zander – $B \rightarrow D^{(*)} \tau \nu$ at Belle Measurements

Tagging Methods

Typical hadronic tag side without any signal side selection

Motivation Principle $\circ\circ$ O Daniel Zander – $B \rightarrow D^{(*)} \tau \nu$ at Belle

Measurements

Measurements

Isospin invariance assumed

Motivation Principle \circ Principle \circ Daniel Zander – $B \rightarrow D^{(*)} \tau \nu$ at Belle Conclusion

September 30th, 2012

Outlook

New Full Reconstruction algorithm

Increased efficiency and purity

Principle O

Measurements

Conclusion

41/42

Fit Procedure and Expected Sensitivity

Do be done ...

Motivation Principle $\circ\circ$ Paniel Zander – $B \rightarrow D^{(*)} \tau \nu$ at Belle

Measurements

Conclusion

September 30th, 2012