Status and outlook on global $B \rightarrow X_s \gamma \& |V_{ub}|$ fits

SIMBA Collaboration:

Florian U. Bernlochner¹, Heiko M. Lacker², Zoltan Ligeti³, Iain Stewart⁴, Frank Tackmann⁵, Kerstin Tackmann⁵

florian.bernlochner@cern.ch

¹University of Victoria, British Columbia, Canada
 ²Humboldt University of Berlin, Berlin, United States
 ³Lawrence Berkeley National Laboratory, California, United States
 ⁴Massachusetts Institute of Technology, Massachusetts, United States
 ⁵Deutsches Elektronen-Synchrotron, Hamburg, Germany

September 30, 2012

CKM 2012 Cincinnati, Ohio

Talk overview

- I. Introduction
- II. Analysis and Theory Uncertainties for $B \to X_s \gamma$
- III. SuperB Factories demonstration fit for $|V_{ub}|$
- IV. Summary and Outlook

I.a Introduction

Inclusive $|V_{ub}|$ in a nutshell: (better overview \rightarrow my talk yesterday)

- 1 Measure the partial branching fraction $\Delta \mathcal{B}(B \to X_u \,\ell \, \bar{\nu}_\ell)$
 - * Select phase-space regions more-or-less enriched with $B \to X_u \, \ell \, \bar{\nu}_\ell$

$$ightarrow |V_{ub}| = \sqrt{rac{\Delta \mathcal{B}}{ au_B \Delta \Gamma_{ ext{theory}}}}$$

- 2 External input needed for $\Delta\Gamma_{\text{theory}}$
 - * m_b from $B \to X_c \ \ell \ \bar{\nu}_\ell$ or elsewhere
 - * Shape function model (tested against $B \rightarrow X_s \gamma$)

* Global fit to kinematic moments measured in $B \rightarrow X_c \, \ell \, \bar{\nu}_\ell$ to extract $|V_{cb}|, m_b$, and non-perturbative parameters.

Goal of SIMBA: Employ strategy that proved successful for $|V_{cb}|$ to $|V_{ub}|$.

[Phys.Rev.D86,032004]

I.b SIMBA

Goal of SIMBA: Employ strategy that proved successful for $|V_{cb}|$ to $|V_{ub}|$.

- Determine $|V_{ub}|$, m_b , and shape function (SF) simultaneously.
- Combine different decay modes, measurements, and experiments:
 - 1 Various $B \to X_s \gamma$ spectra
 - Information about the SF, m_b , and C_7
 - 2 Various $B \rightarrow X_u \ell \bar{\nu}_\ell$ partial BFs (or spectra) Information about $|V_{ub}|$, the SF, and m_b . Differential spectra would be more powerful in constraining the SF
 - 3 External constraints on m_b , and shape function moments (from $B \to X_c \ \ell \ \bar{\nu}_\ell$ or other sources)

Benefits of a global fit: Minimizing uncertainties, by making maximal use of all available information; consistent treatment of all correlated uncertainties

(experimental, theoretical, and from input parameters)

Where do we stand?

- 1 $B \rightarrow X_s \ \gamma: \ \mathsf{OK} \ \rightarrow$ progress on theory uncertainties, will show latest fits
- 2 $B \to X_u \ \ell \ \bar{\nu}_\ell$: More work needed \to show toy fit using theory at NLO
- 3 $B \to X_c \ \ell \ \bar{\nu}_{\ell}$ constraints: (OK) \to will not show fits.

[Anna-Sophia Lacker]

I.c Master formulae

The Master formulae for differential spectra:

shape function $\widehat{F} \leftrightarrow$ Differential shape ; $|V_{ub}|^2$ and $|V_{tb} V_{ts}^*|^2 \leftrightarrow$ Normalization of spectra

→ Different SFs lead to different differential spectra:

Part ||

Analysis of $B \rightarrow X_s \gamma$ and Theory Uncertainties

II.a Introduction

- $B \to X_s \gamma$ very promising to probe Flavor sector for new physics
- Most precise measurements at high E_{γ}

Theory most precise with low E_{γ} cut

- Rising E_{γ} cut \leftrightarrow dependence on parton distribution function of *b*-quark (\cong Shape function)
- **HFAG** extrapolates $\Delta \mathcal{B}$ to a lower cut $E_{\gamma} > 1.6$

Reference	$\Delta {\cal B}(E_{\gamma}> 1.6{ m GeV})$
HFAG [arXiv:1010.1589]	$(3.55\pm0.24\pm0.09)\times10^{-4}$
Misiak et al. [PRL:98:022002]	$(3.15\pm 0.23)\times 10^{-4}$

Standard Model $B \rightarrow X_s \gamma$:

SIMBA tests Standard Model without need of extrapolations

II.b Shape function and Master fomulae

- Treat unknown shape function $\widehat{F}(k)$ as expansion of set of basis functions:

$$\widehat{F}(k) = \frac{1}{\lambda} \left[\sum_{n} c_n f_n(k) \right]^2 \quad \text{with} \quad \int_0^\infty dk \, \widehat{F}(k) = \sum_{n} c_n^2 = 1$$

$$\lambda \text{ is a parameter of the basis, } f_n \text{ are the basis functs, with coeff. } c_n.$$

- Non-perturbative physics in coefficients $c_n \rightarrow$ determine from measured differential E_{γ} spectra
- finite exp. input ↔ series must be truncated

Aim negligible model dependence w.r.t. exp. uncert.

- Master formula for differential decay rate: $\begin{aligned} \mathrm{d}\Gamma_{s} \propto |V_{tb} \ V_{ts}^{*}|^{2} \ m_{b}^{2} \bigg\{ \Big| C_{7}^{\mathsf{incl}} \Big|^{2} \left[\left(\widehat{W}_{77}^{\mathsf{sing}} + \widehat{W}_{77}^{\mathsf{nons}} \right) \otimes \widehat{F} + \sum_{n} W_{77, n} \ F_{n}^{\mathsf{subl}} \right] \\ &+ \sum_{i, j \neq 7} \left[\Re(C_{7}^{\mathsf{incl}}) \ 2C_{i} \ \widehat{W}_{7i}^{\mathsf{nons}} + C_{i} C_{j} \ \widehat{W}_{ij}^{\mathsf{nons}} \right] \otimes \widehat{F} + \dots \bigg\} \end{aligned}$

 C_{r}^{ncl} sums all contributions creating same effective $b \rightarrow s\gamma$ vertex prop. to C_7 . Included at full NNLL+NNLO. $C_{i\neq 7}$ fixed at SM values.

- Absorb sub-leading $1/m_b$ corrections: $\widehat{\mathcal{F}}(k) = \widehat{F}(k) + \frac{1}{m_b} \sum_n F_n^{subl}$

Expansion of model function:

8/34

II.c Truncation uncertainty and basis

finite exp. input ↔ series must be truncated

$$\widehat{F}(k) = \frac{1}{\lambda} \left[\sum_{n} c_{n} f_{n}(k) \right]^{2}$$

- \Rightarrow Induces residual basis (= model) dependence
- Truncation error scales with truncation order N

 $1 - \sum_{n=0}^{N} c_n$

- Optimal N and λ (= basis) determined from data
 - \Rightarrow Choose λ so series converges quickly
 - ⇒ Choose N so truncation error is small w.r.t. exp. uncert.
 - \Rightarrow Add more terms with more precise data
- ⇒ Must be careful not to 'overtune' things

II.d Experimental input and Fit

- Analyze four E_{γ} spectra from B_AB_{AR} and Belle
 - a Belle inclusive (in $\Upsilon(4S)$ frame): Inclusive E_{γ} spectrum using 605 fb⁻¹ and a leptonic tag.
 - \Rightarrow Use eff. corrected spectrum and smear theory
 - b BABAR with hadronic tags (in B frame): E_{γ} spectrum using 210 fb⁻¹ and a hadronic tag.
 - c BABAR sum-over-exclusive modes (in B frame): E_{γ} spectrum is recon. using the had. mass m_X using 82 fb⁻¹.
 - d BABAR inclusive (in $\Upsilon(4S)$ frame): Inclusive E_{γ} spectrum using 347 fb⁻¹

 \Rightarrow Use eff. corrected and resol. unfolded spectrum

Fit Procedure: Use a χ^2 fit

- Float C_7^{incl} and number of c_n coefficients $(C_{i\neq7} \text{ fixed at SM values})$
- Evaluate model dependence for several bases: Different Bases $\leftrightarrow \, \lambda = 0.4 0.6 \,\, {\rm GeV}$
- Pick an expansion with negligible model dependence w.r.t. experimental uncertainty

II.e Basis independence

- Fit with two basis functions (*c*₀₁):
 - \rightarrow Equivalent to fixed model with fitted 1st moment
 - \rightarrow All fits with good $\chi^2/\mathrm{ndf:}$ 53.8/50; 44.0/50; 42.3/50

with the NLO Standard Model prediction using

 \Rightarrow Exp. uncertainties underestimate model dependence $|V_{tb} V_{ts}^*| = 40.68 + 0.4 - 0.5$

III.e Basis independence

- $\chi^2/\text{ndf:}$ 46.5/49; 42.5/49; 41.6/49

- Fit with three basis functions (*c*₀₁₂):

II.e Basis independence

- χ^2 /ndf: 43.7/48; 41.7/48; 41.4/48

II.e Basis independence

- C01234 $\lambda = 0.4 \text{ GeV}$ 1.6 =0.5 GeV =0.6 GeV 0.4 0.2 0.4 0.6 0.8 1 1.2 1.4 16 k [GeV]
- $\chi^2/\text{ndf:}$ 43.0/47; 41.6/47; 41.4/47

- Fit with five basis functions (*c*₀₁₂₃₄):

⇒ With enough coeff., results agree within uncert. and become basis (= model) independent

The fitted $|C_{7}^{\text{incl}} V_{tb} V_{ts}^{*}|$ values are compared with the NLO Standard Model prediction using $|V_{tb} V_{ts}^{*}| = 40.68 \substack{+0.4\\-0.5}$

II.f Fit result for $\lambda = 0.5$ GeV

- Fits with 2,3,4 & 5 basis functions: (c01, c012, c0123, c01234)

- Shape function and estimated basis dependence

determined from n + 1 coefficient and envelop from first basis function

 \rightarrow would need to include additional uncertainty due to truncation

\Rightarrow Very little change by including 5th coefficient (4)

compared to other uncertainties $|V_{tb} V_{ts}^*| = 40.68 + 0.4$

II.g Theory Uncertainties

- Largest theory uncert. from higher order pert. theory.
- Evaluated by varying SCET scales: μ_h ; μ_j ; μ_s ; μ_{NS}
- Probe contour with 22 variations and repeat fits: Use fit with $\lambda = 0.5$ GeV and c_{0123}

The red shaded region shows the largest extend of the probed variations

⇒ Shift central value scales to middle of contour results in symmetric theory uncert. interval.

II.h Differential theory uncertainty

top: the impact on the scale variations on the differential spectra at NLL and NNLL are shown

bottom: the resulting envelope and normalized envelopes at NLL and NNL are shown

II.i Summary for $B \rightarrow X_s \gamma$

- Obtained value of C_7^{incl} which is very good agreement with Standard Model
- Non-perturbative shape function (with abs. 1/mb corrections) determined by data

 \Rightarrow Test of Standard Model with negligible model uncertainties from non-perturbative QCD effects

Part III

SuperB Factory demonstration fit for $|V_{ub}|$

III.a SuperB Factory demonstration fit

Why global fits at SuperB Factories? Global fit approach can be very powerful with high statistics

* Measure spectra in addition to (partial) BFs to maximize the available shape information, especially in $B \to X_u \,\ell \, \bar{\nu}_\ell$

Shape information is the key to constraining subleading corrections

* Large datasets can be taken advantage to aggressively reject background at the cost of efficiency and to maximize resolution

(Super clean B-tagging idea as aired by K. Tackmann at SuperB workshop)

Toy $B ightarrow X_s \gamma$ for 75 ab⁻¹

- Spectrum generated with $\lambda = 0.6$ GeV, $c_0 = 1$
- Uncertainties and correlations obtained from incl. *Belle* spectrum:
 - * Stat. uncertainties scaled by luminosity
 - Syst. uncertainties scaled by 1/3
 - * Correlations and detector res. assumed to be the same (likely a bit on the optimistic side)

III.b SuperB Factory $B \rightarrow X_{s\gamma}$ fit

Fit result with 5 coefficients and $\lambda = 0.5$ GeV:

ignore subleading SF

III.c SuperB Factory $B \rightarrow X_{s\gamma}$ fit

Toy $B \to X_u \, \ell \, \bar{\nu}_\ell$ for 75 ab⁻¹

- m_X and E_ℓ spectra generated with $\lambda = 0.6$ GeV, $c_0 = 1$
- Uncertainties and corral. inspired by BABAR [Phys.Rev.D86,032004]
 - * Assuming main uncertainties and corr. due to $B o X_u \, \ell \, ar
 u_\ell$ background
 - * Aiming to be conservative, but clear caveat: no resolution effects considered.

III.d SuperB Factory $B \to X_u \, \ell \, \bar{\nu}_\ell + B \to X_s \gamma$ fit Fit result with 5 coefficients and $\lambda = 0.5$ GeV:

- Large amount of data can be used to push analyses to the limits

on the experimental as well as on the theory side

- Subleading effects between $B \to X_s \gamma$ and $B \to X_u \, \ell \, \bar{\nu}_\ell$ can be addressed.

III.e SuperB Factory $B \rightarrow X_u \, \ell \, \bar{\nu}_\ell + B \rightarrow X_{s\gamma}$ fit

IV Summary and Outlook

- Global fits for $|V_{ub}|$ can be a powerful tool at SuperB Factories.
- Presented a status update on SIMBA

Where do we stand? $B \rightarrow X_s \gamma$: OK \rightarrow progress on theory uncertainties, will show latest fits $B \rightarrow X_u \, \ell \, \bar{\nu}_\ell$: More work needed \rightarrow show toy fit using theory at NLO $B \rightarrow X_c \, \ell \, \bar{\nu}_\ell$ constraints: (OK) \rightarrow will not show fits.

- \rightarrow Working on wrapping up $B \rightarrow X_s \gamma$, and shift attention to $B \rightarrow X_u \ell \bar{\nu}_\ell$.
 - Thinking about how to merge theoretical and experimental uncertainties into one CI.
 - Main challenge for $B \to X_u \ell \bar{\nu}_{\ell}$: different subleasing $1/m_b$ corrections to shape function.
 - − $b \rightarrow c$ constraints + $B \rightarrow X_s \gamma$: work fine in fits. Glad to learn from C. Schwanda that there are new 1*S* values!

Thank you!

Backup

A.b Differential theory uncertainty

left and right: The fixed order theory uncertainty (at NLO and NNLO) is compared with the estimated uncertainty of the resumed NNLL/NNLO calculation used in this work: the red solid line corresponds to the fixed order result with a scale of $\mu = 4.7$, the red upper and lower dashed lines correspond to a variation of $\mu = 9.4$ and $\mu = 2.35$, respectively. The green line corresponds to the chosen scale of Misiak et al. [PRL:98:022002] (which uses a different definition of C_7 than this work). The blue dotes correspond to the chosen scale variations of the resumed NNLL/NNLO calculation. Our profiles have reasonable agreement with the fixed order results and also taking the range of dots as an uncertainty in this integral, our NNLL and NLL norms agree within uncertainties.

B. Result without BABAR incl. spectrum

17

 c_{01}

 $\lambda = 0.6 \text{ GeV}$ --- $\lambda = 0.5 \text{ GeV}$

---- λ=0.4 GeV

4.8

4.85

- Fit with two basis functions (c_{01}) : 16 $|C_7^{\rm incl}V_{\rm tb}V_{\rm ts}{\,}^*|\times 10^3$ $\lambda = 0.4 \text{ GeV}$ 1.6 λ=0.5 GeV [1.0 [[]]] H(k) [GeV⁻¹] λ=0.6 GeV 15 Standard Model 0.4Ē 14 05 undamalana harakan kutakan kuta 0.2 0.4 0.6 0.8 1.2 1.4 1.6 k [GeV] Preliminary (exp. uncertainties only) 13L 4.65 - χ^2 /ndf: 53.8/50; 44.0/50; 42.3/50 4.7 4.75 m_{b}^{1S} [GeV/ c^{2}]

B.a Basis independence

 c_{012}

····· λ=0.6 GeV $--\lambda=0.5 \text{ GeV}$

---- λ=0.4 GeV

4.8

4.85

B.a Basis independence

B.a Basis independence

- Fit with five basis functions (C_{01234}):
- $\chi^2/\text{ndf:}$ 53.8/50; 44.0/50; 42.3/50

B.b Fit result for $\lambda = 0.5$ GeV

- Fits with 2,3,4 & 5 basis functions: (c01, c012, c0123, c01234)

- Shape function and estimated basis dependence

determined from n + 1 coefficient and envelop from first basis function

\Rightarrow Very little change by including 5*th* coefficient (₄)

ightarrow truncation uncertainty negligible compared to other uncertainties

are compared with the NLO Standard Model prediction using $|V_{tb} V_{ts}^*| = 40.68^{+0.4}_{-0.5}$

B.c Theory uncertainty and results

- Obtained value of C_7^{incl} which is very good agreement with Standard Model
- Non-perturbative shape function (with abs. 1/mb corrections) determined by data

C.a Regions of phase space

Recap on regions of phase space for $B \to X_u \, \ell \, \bar{\nu}_\ell$ and $B \to X_s \, \gamma$:

- SF region at large E_{ℓ} (endpoint) and E_{γ} (peak region): experimentally clean(er) \leftrightarrow theoretically more difficult
- OPE region at small *E*_ℓ, large *q*² and small *E*_γ:

large backgrounds \leftrightarrow theoretically easier

 In between region m_X ∽ m_D; moderately large E_ℓ and E_γ

\Rightarrow No 'golden' regions

 \Rightarrow Including a wide region needs a combination of optimal theory description for each region

Phys.Rev.D86,032004