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I.a Introduction

Inclusive |Vub| in a nutshell: ( better overview→ my talk yesterday)

1 Measure the partial branching fraction ∆B(B → Xu ` ν̄`)
* Select phase-space regions more-or-less enriched with B → Xu ` ν̄`

I.a Introduction
* Measurements of the partial branching fractions of charmless inclusive

semileptonic decays o↵er a way to measure |Vub| (which is independent from

exclusive or leptonic channels)

* Inclusive semileptonic B ! Xu ` ⌫̄` decays characterized by

q2 = (pB � pX )2 =
⇣
p` + p⌫̄`

⌘2

mX
P+ = EX � |~pX |
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Fig. 17.1.1. Illustration of semileptonic decay B� ! X`�⌫̄`.

as illustrated in Fig. 17.1.1. These are governed by the
CKM-matrix elements Vcb and Vub, and since the inter-
mediate W -boson decays leptonically, do not involve any50

other CKM-matrix elements. Hence, measurements of the
B ! X`⌫ decay rate can be used to directly measure |Vcb|
and |Vub|.

The theoretical description of semileptonic B decays
starts from the electroweak e↵ective Hamiltonian,

He↵ =
4GFp

2

X

q=u,c

Vqb (q̄�µPLb)(`�µPL⌫`) , (17.1.1)

where PL = (1 � �5)/2, and GF is the Fermi constant
as extracted from muon decay. The W boson has been
integrated out at tree level, and higher-order electroweak
corrections are suppressed by additional powers of GF and
are thus very small. The di↵erential B decay rates take the
form

d� / G2
F |Vqb|2

��LµhX|q̄�µPLb|Bi
��2 . (17.1.2)

An important feature of semileptonic decays is that the
leptonic part in the e↵ective Hamiltonian and the decay55

matrix element factorizes from the hadronic part, and that
QCD corrections can only occur in the b ! q current.
The latter do not a↵ect Eq. (17.1.1) and are fully con-
tained in the hadronic matrix element hX|q̄�µPLb|Bi in
Eq. (17.1.2). This factorization is violated by small elec-60

tromagnetic corrections, for example by photon exchange
between the quarks and leptons, which must be taken into
account in situations where high precision is required.

The challenge in the extraction of |Vcb| and |Vub| is
the determination of the hadronic matrix element of the65

quark current in Eq. (17.1.2). For this purpose, di↵erent
theoretical methods have been developed, depending on
the specific decay mode under consideration. In almost all
cases, the large mass of the b-quark, mb ⇠ 5 GeV plays an
important role.70

In exclusive semileptonic decays, one considers the de-
cay of the B meson into a specific final state X = D⇤, ⇡, ....
In this case, one parameterizes the necessary hadronic ma-
trix element in terms of form factors, which are nonper-
turbative functions of the momentum transfer q2. This75

is discussed in Sections 17.1.2 and 17.1.4. Two methods
to determine the necessary form factors are lattice QCD
(LQCD) and light-cone sum rules (LCSR). In LQCD the
QCD functional integrals for the matrix elements are com-
puted numerically from first principles. Heavy-quark e↵ec-80

tive theory (HQET), and nonrelativistic QCD (NRQCD),

were first introduced, at least in part, to enable lattice-
QCD calculations with heavy quarks. Even when these
formalisms are not explicitly used, heavy-quark dynam-
ics are usually used to control discretization e↵ects. An85

exception are the most recent determinations of mb from
lattice QCD, discussed below, which use a lattice so fine
that the b quark can be treated with a light-quark formal-
ism. A complementary method is based on LCSR which
use hadronic dispersion relations to approximate the form90

factor in terms of quark-current correlators, which can be
calculated in an operator product expansion (OPE).

In inclusive semileptonic decays, one considers the sum
over all possible final states X that are kinematically al-
lowed. Employing parton-hadron duality one can replace95

the sum over hadronic final states with a sum over par-
tonic final states. This eliminates any long-distance sensi-
tivity to the final state, while the short-distance QCD cor-
rections, which appear at the typical scale µ ⇠ mb of the
decay, can be computed in perturbation theory in terms of100

the strong coupling constant ↵s(mb) ⇠ 0.2. The remain-
ing long-distance corrections related to the initial B meson
can be expanded in powers of ⇤QCD/mb ⇠ 0.1, with ⇤QCD

a typical hadronic scale of order mB �mb ⇠ 0.5 GeV. This
is called the heavy quark expansion (HQE), and it system-105

atically expresses the decay rate in terms of nonperturba-
tive parameters that describe universal properties of the
B meson. This is discussed in Sections 17.1.3 and 17.1.5.

17.1.1.3 Experimental Techniques

As in other analyses of BB̄ data recorded at B facto-110

ries, the two dominant sources of background for the re-
construction of semileptonic B decays are the combinato-
rial BB̄ and the continuum backgrounds, QED processes
e+e� ! `+`�(�) with ` = e, µ, or ⌧ , and quark-antiquark
pair production, e+e� ! qq(�) with q = u, d, s, c.115

The suppression of the continuum background is achieved
by requiring at least four charged particles in the event and
by imposing restrictions on several event shape variables,
either sequentially on individual variables or by construct-
ing multivariable discriminants. Among these variables are120

thrust, the maximum sum of the longitudinal momenta of
all particles relative to a chosen axis, �✓thrust, the angle
between the thrust axis of all particles associated with the
signal decay and the thrust axis of the rest of the event,
R2, the ratio of the second to the zeroth Fox-Wolfram mo-125

ments, and L0 and L2, the normalized angular moments
(introduced in Sec. 9).

The separation of semileptonic B decays from BB̄
backgrounds is very challenging because they result in one
or more undetected neutrinos. The energy and momentum
of the missing particles can be inferred from the sum of
all other particles in the event,

(Emiss,pmiss) = (E0,p0) � (
X

i

Ei,
X

i

pi), (17.1.3)

where (E0,p0) is the four-vector of the colliding beams. If
the only undetected particle in the event is one neutrino,

[Illustration by F. Tackmann]
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* Important background: B ! Xc ` ⌫̄`

* Inclusive decay rate d�theory/
�
dE` dmX dq2

�
can be predicted by QCD:

Calculations: ADFR [EPJC:59;831], BLNP [NPB:699;335], DGE [JHEP:0601097], GGOU[JHEP:0710:058]

Di↵er significantly in their treatment of pert. corrections and the parameterization of non-pert. e↵ects.
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q
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2 External input needed for ∆Γtheory

* mb from B → Xc ` ν̄` or elsewhere
* Shape function model (tested against B → Xs γ)
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the partial branching fractions:

N0
meas = PB0

true→B0
reco

N0
true + PB−

true→B0
reco

N−
true,

N−
meas = PB0

true→B−
reco

N0
true + PB−

true→B−
reco

N−
true,

where the cross-feeds probabilities, PB−
true→B0

reco
and

PB0
true→B−

reco
, are computed using MC simulated events

and are typically of the order of (2 - 3)%.

Figure 6 shows the q2 distributions of B → Xu�ν̄
events after background subtraction, for charged and
neutral B decays, with MX < 1.7 GeV. Fitted yields,
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Figure 6 shows the q2 distributions of B → Xu�ν̄
events after background subtraction, for charged and
neutral B decays, with MX < 1.7 GeV. Fitted yields,

↑
a) mX < 1.55 GeV or mX < 1.70 GeV

b) P+ < 0.66 GeV

c) mX < 1.70 GeV & q2 > 8 GeV2

d) pB ∗
� > 1.0 GeV or pB ∗

� > 1.3 GeV

← a) & b) mX − q2, pB ∗
� > 1.0 GeV

(White) B → Xu � ν̄�; (Cyan) B → Xu � ν̄�

leakage into signal region; (Grey) Bkg from

B → Xc � ν̄� and other sources
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two-dimensional MX – q2 distribution for the sum of two scaled MC contributions (histograms), B → Xu�ν̄ decays (white) and
the background (dark shading). Lower row: corresponding spectra with equal bin size after background subtraction based on
the fit. The data are not corrected for efficiency.

the partial branching fractions:

N0
meas = PB0

true→B0
reco

N0
true + PB−

true→B0
reco

N−
true,

N−
meas = PB0

true→B−
reco

N0
true + PB−

true→B−
reco

N−
true,

where the cross-feeds probabilities, PB−
true→B0

reco
and

PB0
true→B−

reco
, are computed using MC simulated events

and are typically of the order of (2 - 3)%.

Figure 6 shows the q2 distributions of B → Xu�ν̄
events after background subtraction, for charged and
neutral B decays, with MX < 1.7 GeV. Fitted yields,

↑
a) mX < 1.55 GeV or mX < 1.70 GeV

b) P+ < 0.66 GeV

c) mX < 1.70 GeV & q2 > 8 GeV2

d) pB ∗
� > 1.0 GeV or pB ∗

� > 1.3 GeV

← a) & b) mX − q2, pB ∗
� > 1.0 GeV

(White) B → Xu � ν̄�; (Cyan) B → Xu � ν̄�

leakage into signal region; (Grey) Bkg from

B → Xc � ν̄� and other sources
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↑
a) mX < 1.55 GeV or mX < 1.70 GeV

b) P+ < 0.66 GeV

c) mX < 1.70 GeV & q2 > 8 GeV2

d) pB ∗
� > 1.0 GeV or pB ∗

� > 1.3 GeV

← a) & b) mX − q2, pB ∗
� > 1.0 GeV

(White) B → Xu � ν̄�; (Cyan) B → Xu � ν̄�

contamination from outside signal region;

(Grey) Bkg: B → Xc � ν̄� & other

13 / 23

[Phys.Rev.D86,032004]

Inclusive |Vcb| in a nutshell:

* Global fit to kinematic moments measured in B → Xc ` ν̄` to extract
|Vcb|, mb, and non-perturbative parameters.

Goal of SIMBA: Employ strategy that proved successful for |Vcb| to |Vub|.
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I.b SIMBA
Goal of SIMBA: Employ strategy that proved successful for |Vcb| to |Vub|.

- Determine |Vub|, mb, and shape function (SF) simultaneously.

- Combine different decay modes, measurements, and experiments:
1 Various B → Xs γ spectra

Information about the SF, mb , and C7
2 Various B → Xu ` ν̄` partial BFs (or spectra)

Information about |Vub|, the SF, and mb . Differential spectra would be more powerful in
constraining the SF

3 External constraints on mb , and shape function moments (from B → Xc ` ν̄` or other sources)

Benefits of a global fit: Minimizing uncertainties, by making maximal use of all
available information; consistent treatment of all correlated uncertainties
(experimental, theoretical, and from input parameters)

Where do we stand?

1 B → Xs γ: OK → progress on theory uncertainties, will show latest fits

2 B → Xu ` ν̄`: More work needed→ show toy fit using theory at NLO

3 B → Xc ` ν̄` constraints: (OK)→ will not show fits.

[Anna-Sophia Lacker]
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I.c Master formulae
The Master formulae for differential spectra:

II.c Master Formulae for di↵erential spectraII.c Master Formulae for di↵erential spectra
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shape function F̂ ↔ Differential shape ; |Vub|2 and
∣∣Vtb V∗ts

∣∣2 ↔ Normalization of spectra

→ Different SFs lead to different differential spectra:

II.c Master Formulae for di↵erential spectra
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shape function bF $ Di↵erential shape ; |Vub|2 and
��Vtb V⇤

ts

��2 $ Normalization of spectra

! Di↵erent SFs lead to di↵erent di↵erential spectra:
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Part II
Analysis of B → Xs γ and Theory Uncertainties
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II.a Introduction
- B → Xs γ very promising to probe Flavor sector for

new physics

- Most precise measurements at high Eγ
m

Theory most precise with low Eγ cut

1.8 2 2.2 2.4 2.6 2.8
0

5

10

15

20

25

30

35

E γ [GeV]

A
rb

it
ra

ry
u
n
it
s

Background from B decays dominates

�ank and endpoint region
depend on shape function

[PRL:103241801]

- Rising Eγ cut ↔ dependence on parton distribution
function of b-quark (=̂ Shape function)

- HFAG extrapolates ∆B to a lower cut Eγ > 1.6
Reference ∆B(Eγ > 1.6 GeV)

HFAG [arXiv:1010.1589] (3.55± 0.24± 0.09)× 10−4

Misiak et al. [PRL:98:022002] (3.15± 0.23)× 10−4

Standard Model B → Xs γ:

b

ū
s

ū

Vtb Vts

γ

W −

c, t ,Vcs,Vcb

2HDM contribution:

b

ū
s

ū

γ

H −

c, t

⇒ SIMBA tests Standard Model without need of extrapolations
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II.b Shape function and Master fomulae
- Treat unknown shape function F̂ (k) as expansion

of set of basis functions:

I.b Shape function and Master fomulae

- Treat unknown shape function as expansion
of set of basis functions:
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λ
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λ is a parameter of the basis, fn are the basis functs. with coeff. cn .

- Non-perturbative physics in coefficients cn →
determine from measured differential Eγ spectra

- finite exp. input ↔ series must be truncated

Aim negligible model dependence w.r.t. exp. uncert.

- Master formula for differential decay rate:
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- Non-perturbative physics in coefficients cn →
determine from measured differential Eγ spectra

- finite exp. input ↔ series must be truncated

Aim negligible model dependence w.r.t. exp. uncert.

- Master formula for differential decay rate:
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C incl
7 sums all contributions creating same effective b → sγ vertex

prop. to C7. Included at full NNLL+NNLO. Ci 6=7 fixed at SM values.

Used basis functions:
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- Absorb sub-leading 1/mb corrections: F̂(k) = F̂ (k) + 1
mb

∑
n F

subl
n
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II.c Truncation uncertainty and basis

- finite exp. input ↔ series must be truncated$
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- Optimal N and λ (= basis) determined from data

⇒ Choose λ so series converges quickly
⇒ Choose N so truncation error is small w.r.t.
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⇒ Add more terms with more precise data

⇒ Must be careful not to ’overtune’ things

Truncation error with N = 2:
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I.b Shape function and Master fomulae
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- In practice, series must be truncated

- Induces residual basis (x)

Truncation error at n=2:

Residual Basis Dependence from Truncation
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Truncation error at n=4:
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Truncation error with N = 4:

I.c Truncation uncertainty

I.b Shape function and Master fomulae
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- In practice, series must be truncated

- Induces residual basis (x)
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� Must be careful not to “overtune”
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II.d Experimental input and Fit
- Analyze four Eγ spectra from BABAR and Belle

a Belle inclusive (in Υ(4S) frame): Inclusive Eγ spectrum

using 605 fb−1 and a leptonic tag.

⇒ Use eff. corrected spectrum and smear theory

b BABAR with hadronic tags (in B frame): Eγ spectrum

using 210 fb−1 and a hadronic tag.

c BABAR sum-over-exclusive modes (in B frame): Eγ

spectrum is recon. using the had. mass mX using 82 fb−1.

d BABAR inclusive (in Υ(4S) frame): Inclusive Eγ

spectrum using 347 fb−1

⇒ Use eff. corrected and resol. unfolded spectrum

Fit Procedure: Use a χ2 fit

- Float C incl
7 and number of cn coefficients

(Ci 6=7 fixed at SM values)

- Evaluate model dependence for several bases:
Different Bases ↔ λ = 0.4− 0.6 GeV

- Pick an expansion with negligible model dependence
w.r.t. experimental uncertainty
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II.e Basis independence
- Fit with two basis functions (c01):

→ Equivalent to fixed model with fitted 1st moment
→ All fits with good χ2/ndf: 53.8/50; 44.0/50; 42.3/50

c01
Λ=0.4 GeV
Λ=0.5 GeV
Λ=0.6 GeV
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⇒ Exp. uncertainties underestimate model dependence
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Λ=0.5 GeV
Λ=0.4 GeV
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The fitted |C incl
7 Vtb V∗ts | values are compared

with the NLO Standard Model prediction using

|Vtb V∗ts | = 40.68 +0.4
−0.5

 [GeV]γE
1.8 2 2.2 2.4 2.6 2.8

 / 
50

 M
eV

]
3

E
ve

nt
s 

[1
0

0

5

10

15

20

25

30

35

 [GeV]γE
1.9 2 2.1 2.2 2.3 2.4 2.5 2.6

 / 
0.

1 
G

eV
 ]

-4
) 

[1
0

γ s
 X

→
 B

(B
 

∆

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 [GeV]γE
1.9 2 2.1 2.2 2.3 2.4 2.5 2.6

 / 
0.

1 
G

eV
 ]

-4
) 

[1
0

γ s
 X

→
 B

(B
 

∆

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 [GeV]γE
1.6 1.8 2 2.2 2.4 2.6 2.8

 / 
0.

1 
G

eV
 ]

-4
) 

[1
0

γ s
 X

→
 B

(B
 

∆

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

11 / 34



III.e Basis independence

- Fit with three basis functions (c012):

c012
Λ=0.4 GeV
Λ=0.5 GeV
Λ=0.6 GeV
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- χ2/ndf: 46.5/49; 42.5/49; 41.6/49

c012
Λ=0.6 GeV
Λ=0.5 GeV
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The fitted |C incl
7 Vtb V∗ts | values are compared

with the NLO Standard Model prediction using

|Vtb V∗ts | = 40.68 +0.4
−0.5
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II.e Basis independence

- Fit with four basis functions (c0123):

c0123
Λ=0.4 GeV
Λ=0.5 GeV
Λ=0.6 GeV
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- χ2/ndf: 43.7/48; 41.7/48; 41.4/48

c0123
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Λ=0.4 GeV
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The fitted |C incl
7 Vtb V∗ts | values are compared

with the NLO Standard Model prediction using

|Vtb V∗ts | = 40.68 +0.4
−0.5
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II.e Basis independence
- Fit with five basis functions (c01234):

c01234
Λ=0.4 GeV
Λ=0.5 GeV
Λ=0.6 GeV
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- χ2/ndf: 43.0/47; 41.6/47; 41.4/47

⇒ With enough coeff., results agree within uncert.
and become basis (= model) independent

c01234
Λ=0.6 GeV
Λ=0.5 GeV
Λ=0.4 GeV
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The fitted |C incl
7 Vtb V∗ts | values are compared

with the NLO Standard Model prediction using

|Vtb V∗ts | = 40.68 +0.4
−0.5
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II.f Fit result for λ = 0.5 GeV
- Fits with 2,3,4 & 5 basis functions: (c01,c012,c0123,c01234)

- Shape function and estimated basis dependence
determined from n + 1 coefficient and envelop from first basis function

Λ=0.5 GeV
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⇒ Uncertainties underestimated with too few coeff.
→ would need to include additional uncertainty due to truncation

⇒ Very little change by including 5th coefficient (c4)

→ truncation uncertainty negligible compared to other uncertainties
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Fitted values of |C incl
7 Vtb V∗ts |

are compared with the NLO
Standard Model prediction using

|Vtb V∗ts | = 40.68 +0.4
−0.5
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II.g Theory Uncertainties

- Largest theory uncert. from higher order pert. theory.

- Evaluated by varying SCET scales: µh; µj ; µs ; µNS

- Probe contour with 22 variations and repeat fits:
Use fit with λ = 0.5 GeV and c0123

Λ=0.5 GeV

Standard Model

Preliminary Hexp. + theo. uncertaintiesL
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The red shaded region shows the largest extend of the probed variations

⇒ Shift central value scales to middle of contour results in
symmetric theory uncert. interval.

Curent central value scales:
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1.0 1.5 2.0 2.5
0
1
2
3
4
5

Proile 0 for mH , mi, mS, mNS

1.0 1.5 2.0 2.5
0.0
0.5
1.0
1.5
2.0
2.5

Proile 1 for mH , mi, mS, mNS

1.0 1.5 2.0 2.5
0.0
0.5
1.0
1.5
2.0
2.5

Proile 2 for mH , mi, mS, mNS

1.0 1.5 2.0 2.5
0
1
2
3
4
5

Proile 3 for mH , mi, mS, mNS

1.0 1.5 2.0 2.5
0
1
2
3
4
5

Proile 4 for mH , mi, mS, mNS

1.0 1.5 2.0 2.5
0
2
4
6
8
10

Proile 5 for mH , mi, mS, mNS

1.0 1.5 2.0 2.5
0
2
4
6
8
10

Proile 6 for mH , mi, mS, mNS

1.0 1.5 2.0 2.5
0.0
0.5
1.0
1.5
2.0
2.5

Proile 7 for mH , mi, mS, mNS

1.0 1.5 2.0 2.5
0.0
0.5
1.0
1.5
2.0
2.5

Proile 8 for mH , mi, mS, mNS

1.0 1.5 2.0 2.5
0
1
2
3
4
5

Proile 9 for mH , mi, mS, mNS

1.0 1.5 2.0 2.5
0
1
2
3
4
5

Proile 10 for mH , mi, mS, mNS

1.0 1.5 2.0 2.5
0
2
4
6
8
10

Proile 11 for mH , mi, mS, mNS

1.0 1.5 2.0 2.5
0
2
4
6
8
10

Proile 12 for mH , mi, mS, mNS

1.0 1.5 2.0 2.5
0.0
0.5
1.0
1.5
2.0
2.5

Proile 13 for mH , mi, mS, mNS

1.0 1.5 2.0 2.5
0
2
4
6
8
10

Proile 14 for mH , mi, mS, mNS

1.0 1.5 2.0 2.5
0.0
0.5
1.0
1.5
2.0
2.5

Proile 15 for mH , mi, mS, mNS

1.0 1.5 2.0 2.5
0
2
4
6
8
10

Proile 16 for mH , mi, mS, mNS

1.0 1.5 2.0 2.5
0.0
0.5
1.0
1.5
2.0
2.5

Proile 17 for mH , mi, mS, mNS
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0
2
4
6
8
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Proile 18 for mH , mi, mS, mNS
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Proile 19 for mH , mi, mS, mNS
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II.h Differential theory uncertainty
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II.i Summary for B → Xsγ
- Obtained value of C incl

7 which is very good agreement with Standard Model

- Non-perturbative shape function (with abs. 1/mb corrections) determined by data

Λ=0.5 GeV
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⇒ Test of Standard Model with negligible model uncertainties from
non-perturbative QCD effects
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Part III
SuperB Factory demonstration fit for |Vub|
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III.a SuperB Factory demonstration fit

Why global fits at SuperB Factories? Global fit approach can be very powerful
with high statistics

* Measure spectra in addition to (partial) BFs to maximize the available
shape information, especially in B → Xu ` ν̄`
Shape information is the key to constraining subleading corrections

* Large datasets can be taken advantage to aggressively reject background
at the cost of efficiency and to maximize resolution
(Super clean B-tagging idea as aired by K. Tackmann at SuperB workshop)

Toy B → Xsγ for 75 ab−1

- Spectrum generated with λ = 0.6 GeV, c0 = 1

- Uncertainties and correlations obtained

from incl. Belle spectrum:
* Stat. uncertainties scaled by luminosity
* Syst. uncertainties scaled by 1/3
* Correlations and detector res. assumed to be the

same (likely a bit on the optimistic side) 1.8 2 2.2 2.4 2.6 2.8
0

5

10

15

20

25

30

35
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III.b SuperB Factory B → Xsγ fit
Fit result with 5 coefficients and λ = 0.5 GeV:
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Toy SuperB

current

λ=0.5 GeV, c0,1,2,3,4

- Theoretical uncertainties will dominate

- High precision data can be used to fit
more cn and for subleasing effects

- Everything at NLL+NLO since we will
also include B → Xu ` ν̄`, for simplicity
ignore subleading SF
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III.c SuperB Factory B → Xsγ fit

Toy B → Xu ` ν̄` for 75 ab−1

- mX and E` spectra generated with λ = 0.6 GeV, c0 = 1

- Uncertainties and corral. inspired by BABAR [Phys.Rev.D86,032004]
* Assuming main uncertainties and corr. due to B → Xu ` ν̄` background
* Aiming to be conservative, but clear caveat: no resolution effects considered.
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III.d SuperB Factory B → Xu ` ν̄` + B → Xsγ fit
Fit result with 5 coefficients and λ = 0.5 GeV:
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- Large amount of data can be used to push analyses to the limits
on the experimental as well as on the theory side

- Subleading effects between B → Xsγ and B → Xu ` ν̄` can be addressed.
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III.e SuperB Factory B → Xu ` ν̄` + B → Xsγ fit

Fit result with 5 coefficients and λ = 0.5 GeV:
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- Fitting only B → Xu ` ν̄`
eliminates sensitivity to
subleading effects.
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IV Summary and Outlook

- Global fits for |Vub| can be a powerful tool at SuperB Factories.

- Presented a status update on SIMBA

Where do we stand?

1 B ! X

s

�: OK ! progress on theory uncertainties, will show latest fits

2 B ! X

u

` ⌫̄`: More work needed ! show toy fit using theory at NLO

3 B ! X

c

` ⌫̄` constraints: (OK) ! will not show fits.

→ Working on wrapping up B → Xs γ, and shift attention to B → Xu ` ν̄`.
− Thinking about how to merge theoretical and experimental uncertainties into one CI.
− Main challenge for B → Xu ` ν̄`: different subleasing 1/mb corrections to shape function.
− b → c constraints + B → Xs γ: work fine in fits. Glad to learn from C. Schwanda that there are

new 1S values!

Thank you!
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A.b Differential theory uncertainty
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left and right: The fixed order theory uncertainty (at NLO and NNLO) is compared with the estimated uncertainty

of the resumed NNLL/NNLO calculation used in this work: the red solid line corresponds to the fixed order result

with a scale of µ = 4.7, the red upper and lower dashed lines correspond to a variation of µ = 9.4 and µ = 2.35,

respectively. The green line corresponds to the chosen scale of Misiak et al. [PRL:98:022002] (which uses a

different definition of C7 than this work). The blue dotes correspond to the chosen scale variations of the resumed

NNLL/NNLO calculation. Our profiles have reasonable agreement with the fixed order results and also taking the

range of dots as an uncertainty in this integral, our NNLL and NLL norms agree within uncertainties.
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B. Result without BABAR incl. spectrum

- Fit with two basis functions (c01):
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B.a Basis independence

- Fit with three basis functions (c012):
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Λ=0.4 GeV
Λ=0.5 GeV
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B.a Basis independence

- Fit with four basis functions (c0123):

c0123
Λ=0.4 GeV
Λ=0.5 GeV
Λ=0.6 GeV
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B.a Basis independence

- Fit with five basis functions (c01234):

c01234
Λ=0.4 GeV
Λ=0.5 GeV
Λ=0.6 GeV
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B.b Fit result for λ = 0.5 GeV
- Fits with 2,3,4 & 5 basis functions: (c01,c012,c0123,c01234)

- Shape function and estimated basis dependence
determined from n + 1 coefficient and envelop from first basis function
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⇒ Uncertainties underestimated with too few coeff.
→ would need to include additional uncertainty due to truncation

⇒ Very little change by including 5th coefficient (c4)

→ truncation uncertainty negligible compared to other uncertainties
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B.c Theory uncertainty and results

- Obtained value of C incl
7 which is very good agreement with Standard Model

- Non-perturbative shape function (with abs. 1/mb corrections) determined by data

Λ=0.5 GeV
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C.a Regions of phase space

Recap on regions of phase space for B → Xu ` ν̄` and B → Xs γ:

- SF region at large E` (endpoint)
and Eγ (peak region):
experimentally clean(er)↔ theoretically more difficult

- OPE region at small E`, large q2

and small Eγ :
large backgrounds↔ theoretically easier

- In between region mX v mD ;
moderately large E` and Eγ

⇒ No ’golden’ regions

⇒ Including a wide region needs a combination
of optimal theory description for each region

IV.c BABAR [Phys.Rev.D86,032004]IV.c BABAR [Phys.Rev.D86,032004] 14
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FIG. 4: Measured distributions (data points) of (a) MX , (b) P+, (c) q2 with MX < 1.7 GeV, and (d) p∗
� . Upper row: comparison
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