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Hypothesis testing
One of the most common uses of statistics in particle physics is 
Hypothesis Testing (e.g. for discovery of a new particle)
‣ assume one has pdf for data under two hypotheses:

● Null-Hypothesis, H0:  eg. background-only
● Alternate-Hypothesis H1: eg. signal-plus-background

‣ one makes a measurement and then needs to decide whether 
to reject or accept H0
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Hypothesis testing

Before we can make much progress with statistics, we need 
to decide what it is that we want to do.
‣ first let us define a few terms:

● Rate of Type I error 
● Rate of Type II 
● Power = 

Treat the two hypotheses asymmetrically
‣ the Null is special.  

● Fix rate of Type I error, call it “the size of the test”

Now one can state “a well-defined goal”
‣Maximize power for a fixed rate of Type I error
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Hypothesis testing

The idea of a “    “ discovery criteria for particle physics is really a 
conventional way to specify the size of the test
‣ usually     corresponds to 

● eg. a very small chance we reject the standard model
In the simple case of number counting it is obvious what region is 
sensitive to the presence of a new signal
‣ but in higher dimensions it is not so easy
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6 Glen Cowan Multivariate Statistical Methods in Particle Physics

Finding an optimal decision boundary
Maybe select events with “cuts”:

xi < ci
xj  < cj

Or maybe use some other type of decision boundary:

Goal of multivariate analysis is to do this in an “optimal” way.
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The Neyman-Pearson Lemma
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The Neyman & Pearson’s Theory

In 1928-1938 Neyman & Pearson developed a theory in which one
must consider competing Hypotheses:

- the Null Hypothesis H0 (background only)

- the Alternate Hypothesis H1 (signal-plus-background)

Given some probability that we wrongly reject the Null Hypothesis

α = P (x /∈ W |H0)

Find the region W such that we minimize the probability of wrongly
accepting the H0 (when H1 is true)

β = P (x ∈ W |H1)

April 11, 2005

EFI High Energy Physics Seminar

Modern Data Analysis Techniques

for High Energy Physics (page 6)

Kyle Cranmer

Brookhaven National Laboratory

(Convention: if data falls in W then we accept H0)
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The region     that minimizes the probability of wrongly 
accepting     is just a contour of the Likelihood Ratio

Any other region of the same size will have less power 

The likelihood ratio is an example of a Test Statistic, eg. 
a real-valued function that summarizes the data in a way 
relevant to the hypotheses that are being tested
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The Neyman-Pearson Lemma

P (x|H1)
P (x|H0)

> k�

W
H0
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A short proof of Neyman-Pearson

Consider the contour of the likelihood ratio that has size a given 
size (eg. probability under H0 is 1-   )
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P (x|H1)
P (x|H0)

> k�
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A short proof of Neyman-Pearson
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Now consider a variation on the contour that has the same 
size
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A short proof of Neyman-Pearson
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P ( |H0) = P ( |H0)

Now consider a variation on the contour that has the same size 
(eg. same probability under H0)
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A short proof of Neyman-Pearson

66

Because the new area is outside the contour of the likelihood 
ratio, we have an inequality

P (x|H1)
P (x|H0)

< k�

P ( |H0) = P ( |H0)

P ( |H1) < P ( |H0)k�
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A short proof of Neyman-Pearson
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P (x|H1)
P (x|H0)

< k�
P (x|H1)
P (x|H0)

> k�

P ( |H0) = P ( |H0)

P ( |H1) < P ( |H0) P ( |H1) > P ( |H0)k� k�

And for the region we lost, we also have an inequality
Together they give...
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A short proof of Neyman-Pearson
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The new region region has less power.

P (x|H1)
P (x|H0)

< k�
P (x|H1)
P (x|H0)

> k�

P ( |H0) = P ( |H0)

P ( |H1) < P ( |H1)

P ( |H1) < P ( |H0) P ( |H1) > P ( |H0)k� k�
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2 discriminating variables
Often one uses the output of a neural network or multivariate algorithm in 
place of a true likelihood ratio.
‣ That’s fine, but what do you do with it?
‣ If you have a fixed cut for all events, this is what you are doing:
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x1 x2

y2y1

q

q = lnQ = �s + ln
�

1 +
sfs(x, y)
bfb(x, y)

⇥
fb(q) fs(q) L

tot

= L1 · L2

q12 = lnL12 = lnL1 + lnL2 = q1 + q2
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Experiments vs. Events

Ideally, you want to cut on 
the likelihood ratio for your 
experiment
‣ equivalent to a sum of 

log likelihood ratios
Easy to see that includes 
experiments where one 
event had a high likelihood 
and the other one was 
relatively small
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x1 x2

y2y1

q1 q2

q12 = q1 + q2 q1

q2

q 12

fb(q12) fs+b(q12)
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An optimal way to combine
Special case of our 
general probability model 
from yesterday
(no nuisance parameters)
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Instead of simply counting 
events, the optimal test statistic is 
equivalent to adding events 
weighted by 

ln(1+signal/background ratio)

The test statistic is a map T:data → ℝ

By repeating the experiment many 
times, you obtain a distribution for TT=
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p-values
Instead of choosing to accept/reject H0

one can compute the p-value 
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P (x|H1)

P (x|H0)
< k�

P (x|H1)

P (x|H0)
> k�

P ( |H0) = P ( |H0)

P ( |H1) < P ( |H1)

P ( |H1) < P ( |H0) P ( |H1) > P ( |H0)k� k�

Fig. 2: A graphical proof of the Neyman-Pearson lemma.

p-value is given by

p(↵) =

Z 1

T
0

f(T |↵)dT =

Z
f(D|↵) ✓(T (D) � T

0

) dD = P (T � T
0

|↵) , (10)

where T
0

is the value of the test statistic based on the observed data and ✓(·) is the Heaviside function.10

Usually the p-value is just written as p, but I have written it as p(↵) to make its ↵-dependence explicit.
Given that the p-value depends on ↵, how does one decide to accept or reject the null hypothesis?

Remembering that ↵
poi

takes on a specific value for the null hypothesis, we are worried about how the
p-value changes as a function of the nuisance parameters. It is natural to say that one should not reject the
null hypothesis if the p-value is larger than the size of the test for any value of the nuisance parameters.
Thus, in a frequentist approach one should either present p-value explicitly as a function of ↵

nuis

or take
its maximal (or supremum) value

p
sup

(↵
poi

) = sup

↵
nuis

p(↵
nuis

) . (11)

As a final note it is worth mentioning that the size of the test, which serves as the threshold for
rejecting the null hypothesis, is purely conventional. In most sciences conventional choices of the size
are 10%, 5%, or 1%. In particle physics, our conventional threshold for discovery is the infamous 5�
criterion – which is a conventional way to refer to ↵ = 2.87 · 10

�7. This is an incredibly small rate of
Type-I error, reflecting that claiming the discovery of new physics would be a monumental statement.
The origin of the 5� criterion has its roots in the fact that traditionally we lacked the tools to properly
incorporate systematics, we fear that there are systematics that may not be fully under control, and we
perform many searches for new physics and thus we have many chances to reject the background-only
hypothesis. We will return to this in the discussion of the look-elsewhere effect.

3.3 Excluded and allowed regions as confidence intervals
Often we consider a new physics model that is parametrized by theoretical parameters. For instance, the
mass or coupling of a new particle. In that case we typically want to ask what values of these theoretical

10The integral
R
dD is a bit unusual for a marked Poisson model, because it involves both a sum over the number of events

and an integral over the values of x
e

for each of those events.

11

T
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Tobs
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p =

Z 1

T
o

f(T |H0)

If the model for the data 
depends on parameters α 
the p-value also depends 
on α.
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p-values
When the model has nuisance parameters, only reject the null if 
p(α) sufficiently small for all values of the nuisance parameters.
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If the model for the data 
depends on parameters α 
the p-value also depends 
on α.
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The Profile Likelihood Ratio

74

Consider our general model with a single parameter of interest µ 
‣ let µ=0 be no signal, µ=1 nominal signal

In the LEP approach the likelihood ratio is equivalent to:

‣ but this variable is sensitive to uncertainty on ν and makes no use of 
auxiliary measurements a

Alternatively, one can define profile likelihood ratio

‣ where                  is best fit with µ fixed  (the constrained maximum 
likelihood estimator, depends on data)

‣ and    and    are best fit with both left floating (unconstrained)
‣ Tevatron used QTev = λ(µ=1)/λ(µ=0) as generalization of QLEP

µ̂

�(µ) =
L(µ, ˆ̂✓(µ))

L(µ̂, ✓̂)
=

f(D,G|µ, ˆ̂✓(µ;D,G) )
f(D,G|µ̂, ✓̂)

ˆ̂✓(µ;D,G)

✓̂

QLEP =
L(µ = 1, ✓)

L(µ = 0, ✓)
=

f(D|µ = 1, ✓)

f(D|µ = 0, ✓)
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An example
Essentially, you need to fit your model to the data twice:
once with everything floating, and once with signal fixed to 0
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where the ai are the parameters used to parameterize the fake-tau background and ν represents all nui-680

sance parameters of the model: σH ,mZ,σZ,rQCD,a1,a2,a3. When using the alternate parameterization681

of the signal, the exact form of Equation 14 is modified to coincide with parameters of that model.682

Figure 14 shows the fit to the signal candidates for a mH = 120 GeV Higg with (a,c) and without683

(b,d) the signal contribution. It can be seen that the background shapes and normalizations are trying to684

accommodate the excess near mττ = 120 GeV, but the control samples are constraining the variation.685

Table 13 shows the significance calculated from the profile likelihood ratio for the ll-channel, the lh-686

channel, and the combined fit for various Higgs boson masses.687
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Figure 14: Example fits to a data sample with the signal-plus-background (a,c) and background only

(b,d) models for the lh- and ll-channels at mH = 120 GeV with 30 fb−1 of data. Not shown are the

control samples that were fit simultaneously to constrain the background shape. These samples do not

include pileup.

27

�(µ = 0) =
L(µ = 0, ˆ̂✓(µ = 0))

L(µ̂, ✓̂)
=

f(D,G|µ = 0, ˆ̂✓(µ = 0;D,G) )
f(D,G|µ̂, ✓̂)

f(D,G|µ = 0, ˆ̂✓(µ = 0;D,G) )f(D,G|µ̂, ✓̂)
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Properties of the Profile Likelihood Ratio
After a close look at the profile likelihood ratio

one can see the function is independent of true values of θ
‣ though its distribution might depend indirectly

Wilks’s theorem states that under certain conditions the 
distribution of -2 ln λ (μ=μ0) given that the true value of μ is μ0 
converges to a chi-square distribution 
‣ more on this tomorrow, but the important points are:
‣ “asymptotic distribution” is known and it is independent of θ !

● more complicated if parameters have boundaries (eg. µ≥ 0)

Thus, we can calculate the p-value for the background-only 
hypothesis without having to generate Toy Monte Carlo!
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�(µ) =
L(µ, ˆ̂✓(µ))

L(µ̂, ✓̂)
=

f(D,G|µ, ˆ̂✓(µ;D,G) )
f(D,G|µ̂, ✓̂)
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Toy Monte Carlo

Profile Likelihood Ratio
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Explicitly build distribution by generating “toys” / pseudo experiments assuming a 
specific value of µ and ν.  

‣ randomize both main measurements D={x} and auxiliary measurements G={a}
‣ fit the model twice for the numerator and denominator of profile likelihood ratio
‣ evaluate -2ln λ(µ) and add to histogram

Choice of µ is straight forward: typically µ=0 and µ=1, but choice of θ is less clear
‣ more on this tomorrow

This can be very time consuming.  Plots below use millions of “toy” pseudo-
experiments 
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Experimentalist Justification
So far this looks a bit like magic.  How can you claim that you 
incorporated your systematic just by fitting the best value of your 
uncertain parameters and making a ratio?
It won’t unless the the parametrization is sufficiently flexible.
So check by varying the settings of your simulation, and see if the 
profile likelihood ratio is still distributed as a chi-square
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Here it is pretty stable, but 
it’s not perfect (and this is 
a log plot, so it hides some 
pretty big discrepancies)

For the distribution to be 
independent of the nuisance 
parameters your 
parametrization must be 
sufficiently flexible.
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A very important point
If we keep pushing this point to the extreme, the physics problem 
goes beyond what we can handle practically
The p-values are usually predicated on the assumption that the true 
distribution is in the family of functions being considered
‣ eg. we have sufficiently flexible models of signal & background to 

incorporate all systematic effects
‣ but we don’t believe we simulate everything perfectly
‣ ..and when we parametrize our models usually we have further 

approximated our simulation.
● nature -> simulation -> parametrization

At some point these approaches are limited by honest systematics 
uncertainties (not statistical ones).  Statistics can only help us so much 
after this point. Now we must be physicists!
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