Physics Beyond the Standard Model 3.1

Gustavo Burdman

University of São Paulo

CERN - Latin American School of High Energy Physics

Arequipa, Peru, March 6-19 2013

Beyond the Standard Model

•Why do we need to go Beyond the SM ?

Lecture I

•The Hierarchy Problem: what do we need to solve it ?

Lecture 2 •Supersymmetry and the Hierarchy Problem

New Dynamics at the TeV scale: the Higgs as a (pseudo) Nambu-Goldstone Boson

Beyond the Standard Model III

- Solve the Hierarchy problem with dynamics: QCD and the σ (Technicolor, ...)
- Dynamical (composite) <u>light</u> Higgs: is a (pseudo) Goldstone boson
 The example of the pion in QCD
 - Composite Higgs Models:

Little Higgs
Twin Higgs
Gauge-Higgs unification in AdS_5

Where is the Scalar Sector Coming From

- •But what determines m and λ ?
- •Is the scalar sector resulting from some underlying dynamics?

E.g. Superconductivity:

Cooper pairs $\Rightarrow \langle \Phi \rangle \neq 0$

 \mathcal{L}_{Φ} is the Ginzburg-Landau theory \blacktriangleleft

EM broken in the SC Meissner effect penetration depth

But microscopic description is BCS

Physics Beyond the Standard Model

Organize by origin of Higgs sector or solution to HP

•Supersymmetry:

Higgs is elementary

SUSY protects m_h

• Higgs sector is composite:

Technicolor. No Higgs. X

Higgs is a pNGB

Composite Scalars: the Example of QCD

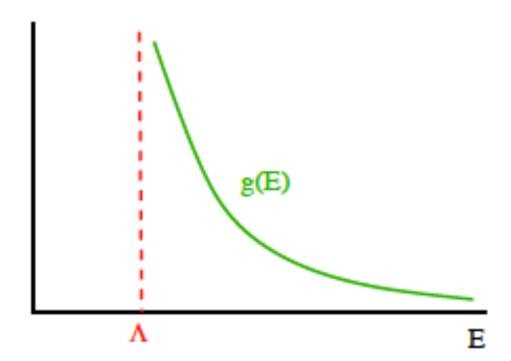
Spontaneous breaking of chiral symmetry in QCD

QCD with 2 flavors:

$$\mathcal{L}_{\mathrm{QCD}} = \bar{Q}_L \, i \, D\!\!\!/ Q_L + \bar{Q}_R \, i \, D\!\!\!/ Q_R - \bar{Q}_L \, M \, Q_R + \mathrm{h.c.}$$

with

$$Q = \begin{pmatrix} u \\ d \end{pmatrix} \qquad M = \begin{pmatrix} m_u & 0 \\ 0 & m_d \end{pmatrix}$$


If M=0, is invariant under $SU(2)_L \times SU(2)_R$

$$egin{array}{lll} Q_L & \longrightarrow & e^{i\ell^a t^a} \, Q_L \ Q_R & \longrightarrow & e^{ir^a t^a} \, Q_R \end{array}$$

$$Q_L \longrightarrow e^{i\ell^a t^a} Q_L$$
 with $\begin{cases} t^a = \frac{\sigma^a}{2}, & a = 1, 2, 3 \\ \ell^a, r^a & \text{free parameters} \end{cases}$

Chiral Symmetry Breaking

 $SU(3)_c$ asymptotically free

At low energies, $\Lambda \simeq \Lambda_{
m QCD}$, quark condensation

$$\langle \bar{Q}_L Q_R \rangle \neq 0 \quad \Rightarrow SU(2)_{\times} SU(2)_R \quad \longrightarrow \quad SU(2)_V$$

Quarks acquire a dynamical mass

$$m_Q \sim \Lambda_{\rm QCD}$$

Chiral Symmetry Breaking

•3 broken generators \implies 3 NGBs (π^+, π^-, π^0)

Since
$$SU(2)_L \times SU(2)_R = SU(2)_V \times SU(2)_A \longrightarrow SU(2)_V$$

Axial current

$$j_{\mu}^{a5} = \bar{Q}\gamma_{\mu}\gamma^{5}Q$$

does not annihilate the vacuum

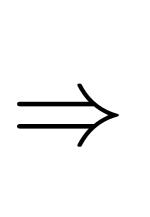
$$\langle 0|j_{\mu}^{a5}|\pi^{b}(p_{\mu})\rangle = if_{\pi}\,p_{\mu}\,\delta^{ab}$$

But still conserved if $m_{\pi}=0$

$$\partial^{\mu} j_{\mu}^{a5} = f_{\pi} m_{\pi}^2$$

Spontaneous Breaking of Chiral Symmetry

Linear σ model


$$\mathcal{L} = \frac{1}{4} \text{Tr} \left[\partial_{\mu} \Sigma^{\dagger} \partial^{\mu} \Sigma \right] + \frac{\mu^{2}}{4} \text{Tr} \left[\Sigma^{\dagger} \Sigma \right] - \frac{\lambda}{16} \left(\text{Tr} \left[\Sigma^{\dagger} \Sigma \right] \right)^{2}$$

with

$$\Sigma = \sigma + i t^a \pi^a$$

If
$$\mu^2 > 0 \Rightarrow \langle \Sigma \rangle = v \neq 0$$

$$v = \sqrt{\frac{\mu^2}{\lambda}}$$

 $\Longrightarrow \begin{cases} \text{Spontaneous breaking of chiral symmetry} \\ m_{\sigma} = \sqrt{2\lambda} \, v \\ m_{\pi} = 0 \end{cases}$

$$m_{\sigma} = \sqrt{2\lambda} \, v$$

$$m_{\pi}=0$$

Spontaneous Breaking of Chiral Symmetry

In real QCD:

• $\begin{cases} m_\sigma \sim \Gamma_\sigma \sim {\it O}(1) {
m ~GeV} \ {
m ~Cutoff~of~the~effective~theory} \end{cases}$ or is not a low energy state (too broad to be observable)

• m_u , $m_d \neq 0 \implies$ Explicit symmetry breaking

$$m_{\pi} \neq 0$$

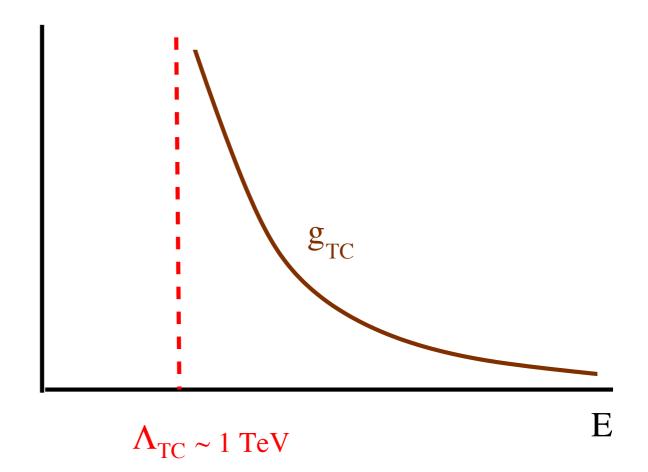
 $m_{\pi} \neq 0$ $\pi's$ are pseudo NGBs

But still light

$$m_{\pi} \simeq 0.14 \text{GeV} \ll O(1) \text{ GeV}$$

GeV vs. TeV Scales

Build a TeV-scale model of EWSB in analogy with QCD Two avenues:


- Fermionic sector breaks EWS just as in QCD Higgs (σ) is not is the light spectrum
- Strong sector breaks global symmetry Higgs is a (pseudo) NGB remnant just like the $\pi's$

Strong Dynamics at the TeV Scale

Scaled up QCD

- New gauge interaction
- Strong at the TeV scale
- Breaks EWS by

$$\langle \bar{F}F \rangle \neq 0$$

Basic Technicolor Model

- •Asymptotically-free interaction $SU(N_T)$
- •New fermions: $SU(2)_L$ doublet

$$Q_L = \begin{pmatrix} T \\ B \end{pmatrix}_L$$
 $(N_T, 1, 2, Y_Q)$ T_R $(N_T, 1, 1, Y_T)$ B_R $(N_T, 1, 1, Y_B)$

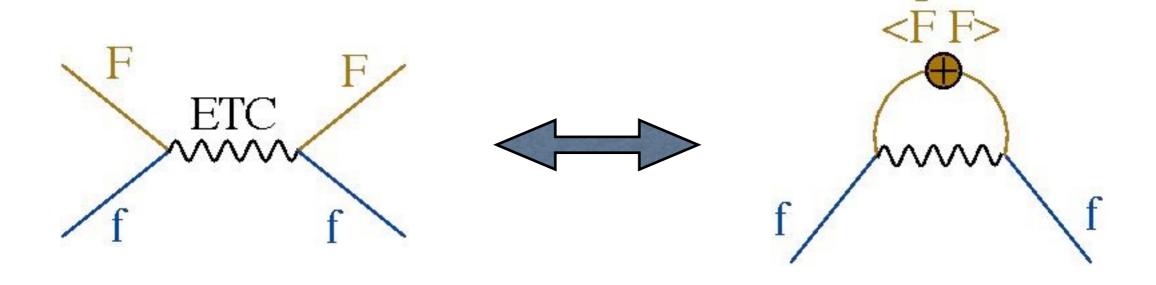
•At Λ_{TC} we have $\langle \bar{Q}_L Q_R \rangle \neq 0$

$$\Rightarrow$$

 $\Longrightarrow \begin{cases} \text{Spontaneous breaking of global } SU(2)_L \times SU(2)_R \\ \\ \text{Also SB of the gauge } SU(2)_L \times U(1)_Y \to U(1)_{\rm EM} \end{cases}$

Higgs Mechanism without a Higgs

$$SU(2)_L \times SU(2)_R \to SU(2)_V \implies$$
 3 Nambu-Goldstone bosons


NGBs eaten as gauge boson longitudinal polarizations

$$W_{\mu}$$
 W_{ν} W_{μ} W_{ν} W_{ν}

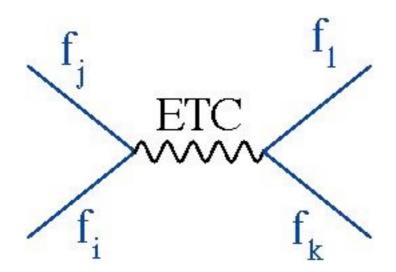
$$i\frac{g^2 F_T^2}{4} \left(g_{\mu\nu} - \frac{q_\mu q_\nu}{q^2}\right)$$

Fermion Masses without a Higgs

Need extended interaction mixing SM fermions with tfermions

$$-\frac{g_{\rm ETC}^2}{M_{\rm ETC}^2} \, \bar{f} f \, \bar{F} F \qquad \Rightarrow \qquad m_f \sim \frac{g_{\rm ETC}^2}{M_{\rm ETC}^2} \, \Lambda_{\rm TC}^3$$

Extended Technicolor


ETC requires more techni-fermions

$$\left(egin{array}{c}T\\B\end{array}
ight)_L^i \qquad T_R^i,\,B_R^i \qquad \qquad {
m techni-quarks}$$
 $\left(egin{array}{c}N\\E\end{array}
ight)_L \qquad N_R,\,E_R \qquad \qquad {
m techni-leptons}$

- ullet Number of doublets higher $N_D=4$ Problems with EWPC
- Larger chiral symmetry broken $SU(8)_L \times SU(8)_R \longrightarrow SU(8)_V$ 63 -3 = 60 NGBs left in the spectrum!

Flavor Violation from ETC Interactions

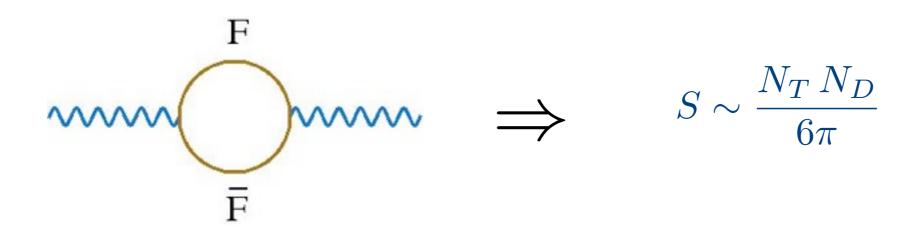
ETC leads to tree-level flavor violation

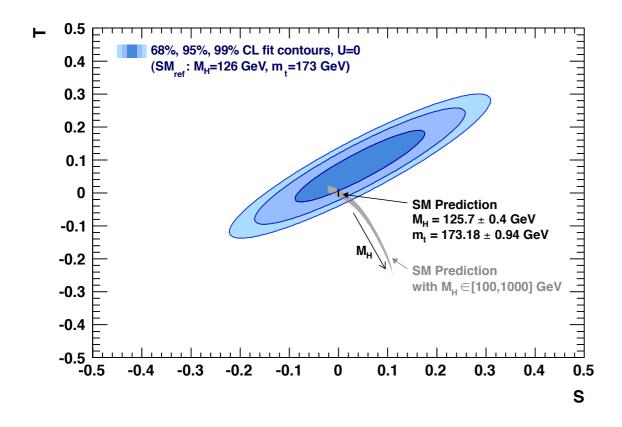
$$\Longrightarrow$$
 effects in $(K^0-\bar{K}^0),~(B^0-\bar{B}^0),~$ mixing, ... $\Longrightarrow M_{\rm ETC}>1000~{
m TeV}$

But $M_{\rm ETC}$ cannot be too large or it would suppress m_t, m_b, m_c too much

Walking Technicolor and Separation of Scales

To get heavier masses need to enhance TC condensate


$$\Rightarrow \begin{cases} \text{Near-conformal behavior of TC interaction} \\ \text{Coupling walks} \end{cases}$$


But walking takes long time for coupling to become super-critical

> Walking generates large separation of scale

Electroweak Precision Constraints

For the simple scaled up QCD scenario

S is very large in QCD-like models

New Ideas in Techni-Color Models

• Minimal Walking Technicolor (F. Saninno et al.)

$$N_T = 2, N_D = 1$$

No flavor theory

Not clear how to get a light Higgs

Can be modeled in AdS_5

• Conformal Technicolor (M. Luty et al.)

Strong sector is near a conformal fixed point in the UV

Explicit conformal breaking \rightarrow EWSB

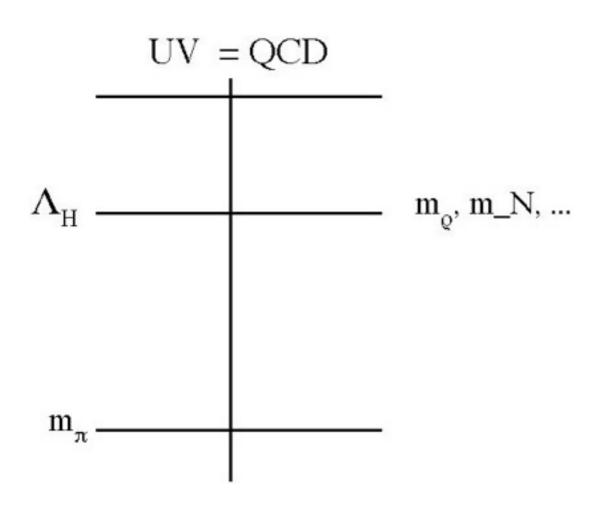
First basic models accommodate light Higgs as pNGB

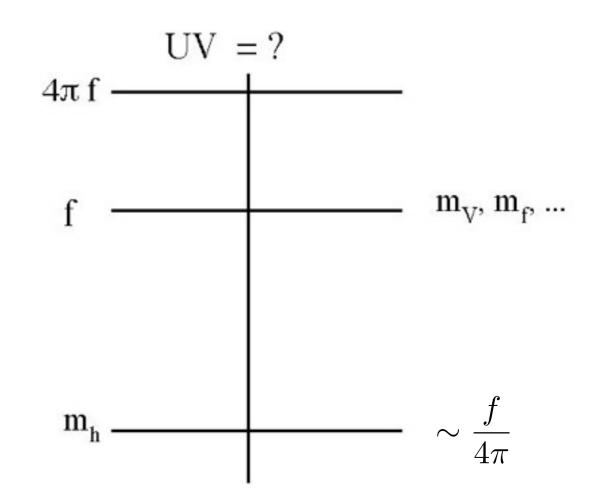
Higgs is a pseudo Nambu-Goldstone Boson

Back to the analogy of QCD at low energies

ullet Build models where the Higgs is like π instead of σ Need to break global symmetry spontaneously

$$SU(2)_L \times SU(2)_R \to SU(2)_V$$


Number of NGBs: 3+3-3=3 (π^+,π^-,π^0)


• Explicit symmetry breaking:

$$m_{\pi}^2 = B_0 \, m_q$$

gives mass to the NGB

Higgs is a pNGB

QCD

Electroweak