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COMMUNICATION FROM THE OBSERVATORY AT LEIDEN.

The force exerted by the stellar systein in the direction perpendicular to the galactic
plane and some related problems, by 7. /. Oort.

Notations. | 4. From VAN RHIN's tables in Groningen Publi-
z distance from the galactic plane, cation No. 38 the density distribution A () has been
Z  velocity component perpendicular to the | computed for four intervals of visual absolute mag-

galactic plane, nitude (Table 13 and Figure 1). Figures 2 and 3 show

the value of Z for z = o, log A (5) for A stars and yellow giants, as derived by

! modulus of a Gaussian component of the | LINDBLAD and PETERSSON. .

distribution of Z (formula (5), p. 253), 5. With the aid of the data contained in the two
preceding sections I have computed the acceleration

K (z) between z = 0 and s = 600. The computations

were made by successive approximations; the B stars

’ . were eliminated first. The results are in Table 14 and

0] t?e number of stari per cubic parsec between Figure 4, K {s) gving the values finaly adopted. The

A(n) ;]i;ufnf):fo‘f]g;:émSquare At | good agreen}em bcl\\c(‘rl t?\c pracm\‘ )"indcpendcm

5 | values of K(z) derived from the separate absolute
= %_ and.m +h | magnitude groups is a strong argument in favour of

4 g.alacnc latitude, | the approximate correctness of the data up to s = 400.

o distance to the axis of rotation of the galactic | The result may be summarized by stating that the

K (z) the acceleration in the direction of z,
A the star-density,
p the distance of a star from the sun,

system, | absolute value of K (z) increases proportionally with
d dlog Afdw. | z from z=0 to 5 = 200; between z = 200 and 5= 500
| it remains practically constant and equal to 38.10~
Summary of the different sections. | emsect.

1 and 2, In these sections a short discussion is | 6. In this section the different spectral classes are
given of KAPTEVN's previous investigation on the | investigated separately. A comparison of numbers
subject and of the reasons why the problem has been | computed with the aid of A'(z), with direct counts
treated anew. In the second section the formulae are | in high galactic latitude revealed a great discrepancy
given which show the connection between £ (z), A (2) for the I\ stars plolmbly due to an error in thL Aduptcd

1. Coin “Dark Métter”
3. Viridl mais of Comé

3. M/L in ‘Coma is 600
' Compared to3 Iczcally

4. Grawtatlonal Ien-smg
could be uséd with -
Iarger telescopes'

Coma Cluster ‘HST

Fritz Zwicky 1933
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ON THE MASSES OF NEBULAE AND OF
CLUSTERS OF NEBULAE

F. ZWICKY

ABSTRACT

Present estimates of the masses of nebulae are based on observations of the lumi-
nosities and inlernal rotations of nebulae. It is shown that both these methods are
unreliable; that from the observed luminosities of extmgalactxc systems only lower
limits for the values of their masses can be obtained (sec. i), and that from internal
rotations alone no determination of the masses of nebulae i 15 possxble {sec. ii). The
observed internal motions of nebulae can be understood on the basis of a simple me-
chanical model, some properties of which are discussed. The essentialfeatureisa central
core whose internal viscosity due to the gravitational interactions of its component
masses is so high as to cause it to rotate like a solid body.

In sections iii, iv, and v three new methods for the determination of nebular masses
are discussed, each of which makes use of a different fundamental principle of physics,

Method iil is based on the virial theorem of classical mechanics. The application of
this theorem to the Coma cluster leads to a minimum value 3 =4.5X 10" M for the
average mass of its member nebulae.

Method iv calls for the observation among nebulae of certain gravifalionsl lens
effects.

Section v gives a generalization of the principles of ordinary stadistical mechanics to
the whole system of nebulae, which suggests a new and powerful method which ulti-
mately should enable us to determine the masses of all types of nebulae. This method
is very flexible and is capable of many modes of application. It is proposed, in par-
ticular, to investigate the distribution of nebulae in individual great clusters.

As a first step toward the realization of the proposed program, the Coma cluster of
nebulae was photographed with the new 18-inch Schmidt telescope on Mount Palomar.
Counts of negulae brighter than about m = 16.7 given in section vilead to the gratifying
result that the dxatr’buuon of nebulae in the Coma cluster is very similar to the dis-
tribution of luminosity in globular nebulae, which, according to Hubble’s investiga-
tions, coincides closely with the theoretically determined distribution of matter in
isothermal gravitational gas spheres. The high central condensation of the Coma
cluster, the very gradual decrease of the number of nebulae per unit volume at great
distances from itz center, and the hitherto unexpected enormous extension of this
cluster become here apmarﬂnt for the first time. These results also suggest that the
current classification of nebulae into relatively few cluster nebuloe and a majority of
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DM In clusters




Clusters radiate in X rays

L

Coma cluster




Clusters radiate in X rays
Chandra 2009
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Einstejn Ring "

Einstein*Ring

.

44- X
24

x ¥

@ ==

Observer

Mass of lens determines angular size of ring




Blue Galaxy lensed by Large Red Galaxy

SDSS LRG 3-757 seen by HST WFC-3




Dark Matter in Abell 2218 (HST)
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| &nsing Mass = Virial Mass
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Microlensing

Gravitational lenses (e.g., brown dwarfs)
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Grawvitational Microlensing by Black Hole

Microlensed
imagc




Hybrid Inflation Model Black Hole Production @ end inflation

p=0 fluid

0.1
logo,

Large scales

107

Density Perturbation Small scales
Spectrum k.

logk
JGB, A. Linde, D. Wands (1996)
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Large Scales




Clusters of galaxies

CHANDRA X-RAY DSS OpPTICAL

f.h’"? =0.08£0.03 = %2, ~0.15 for h=0.7

M




Gravitational Lensing

Path of undeflected Apparent path of
light from quasar light to Earth

Line of sight ™ 1

— — —

Deflected light

Galaxy close to line of sight
acts as gravitational lens

False image
of quasar

Distant
quasar

False image
of quasar




Gravitational Lens in Abell 2218 HST - WFPC2

PF95-14 - ST Scl OPO - April 5, 1995 - W. Couch (UNSW), NASA




Gravitational Lensing




Further
Cosmological

Evidence




t,H, =0.99 £0.05
Q, =0.28+0.05
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CMB Anisotropies

Dark epoch

First stars

Galaxies & Quasars

Clusters & Superclusters
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Gravitational Collapse

Collapsed region
(a galaxy)

seed

Denser region
Initial @ @ @

Decoupled
Expansmn (Hubble Flow) from expansion
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Power
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Current power spectrum P{k) [(h~! Mpc)?]
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Numerical

Simulations
(beyond pert. Theory)
















ACDM p&

Large Scale
Structure

Simulations
(1996)

SCDM (B

rCDM [N

OCDM [

The VIRGO Collaboration 1996



Voronoi foam, smoothed original

Same Power Spectrum P(k)
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What consfitutes Dark Matter?
\ts? ,
Planets’. . 4‘(;_

" Brown dwaﬁ}i?

Primordi‘é ,‘ 3]

Relic Partlcles from the Blg Bang’?

Neutrinos
Axions .

| Neut.ralinos'
Wimpzillas

Really, we have no idea...



Could
neutrinos

be the
Dark Matter?




Free Streaming
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WIMPs: Cold Thermal Relics

E——

- neutrinos (hot)
» sterile neutrinos, gravitinos (warm)
_ _ _ — thermal relics
* Lightest supersymmetric particle
* Lightest Kaluza-Klein particle

* B.E.C.s, axions, axion clusters

» solitons (Q-balls, B-balls, odd-balls, ...) — nonthermal relics

* supermassive wimpzillas

G3/2T3h? 3 X 10727 cm? s~ 1

Hg <0'annvrel> B <Oannvr€1>

Qppmh® ~




Cold Thermal Relics
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Complementarity of DM searches

Direct Detection

DAMA/LIBRA
CDMS
XENON

KIMS

COuUPP
ZEPLIN
CoGeNT
CRESST
ANAIS
SIMPLE

Accelerator
searches

Many DM models can be
probed by the different
experimental techniques LHC (ILC)

“Redundant”

Indirect Detection
PAMELA

Fermi

MAGIC

AMS

ANTARES
IceCube

CTA
WMAP

detection can

be used to extract DM

properties

XL International Meeting on Fundamental Physics - 2012

David G. Cerdeno



DM experiments (2007)
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Direct Detection

(+ EDELWEISS,
XENON, EURECA,
ZEPLIN, DEAP, ArDM,
WARP, LUX, SIMPLE,
PICASSO, DMTPC,
DRIFT, KIMS, ...)




Direct Detection

* Depends on local WIMP phase-space density

 Usual assumption: p,,=0.3GeV cm™

* Usual assumption: Maxwellian velocity distribution
in galactic rest frame




DAMA/LIBRA
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' DAMA/LIBRA ~ 250 k¢ (0.87 tonZyr)!
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CoGeNT

counts/0.05 keV (0.33 kg, 56 days)

CoGeNT
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CoGeNT
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annual modulation
at 280
Aalseth et al. 2011
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CRESST

CRESST 1o
CRESST 26
CRESST 2009
EDELWEISS-II
CDMS-II
XENON100
DAMA chan.
BJAYAY
CoGeNT

T

WIMP-nucleon cross section [pb]

WIMP mass [GeV]  angloher et al. 2011




XENON/CDMS

-~ Ref

Ref. |

12] CDMS
11] CDMS
39

1072 This work, cuts 1-5

This work, cuts 1-4

Angle et al. 2011
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Indirect Detection

Geometric
acceptance
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F6HE (s2) —

Spectrometer

Tracking 1 Anti-coincidence
system
(6 planes)

Calorimeter

Scintill. S4




Indirect Detection

Low-energy photons Positrons

Galactic Center Quarks \/\/\/\/\”
Dwarf spheroidals 0
DM clumps, Sun . - e

Medium-energy Electrons

gamma rays

Neutrinos

' Antiprotons
Bosons Wrotons
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PAMELA

Bergstrom, Bringmann &

Edsjs (2008)
|

&+ PAMELA

- HEAT

BMS5’ (my=132 GeV)

BM3 (1m2,=233 GeV)

background
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Fermi/GLAST Feature
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Fermi/GLAST Line

Reg3 (SOURCE), E, =120.4 GeV

— Signa.l countB 68 7 (4.59¢) 805 208.5 CcV .
p-value=0.51, xaq =20.1/21

|

Counts - Modd
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E[GeV]  \veniger 1204.2797




Collider

Searches




Collider Searches

Maverick WIMPs Social WIMPs

g—pair production
with subsequent
cascade decays

Missing

/ :

coupling from W
or direct/indirect

Backgrounds (neutrino, QCD, ...) Complicated decay chain

Beltran, Hooper, Kolb, Krusberg, Tait 1002.5137
Rajaraman, Shepherd, Tait, Wijangco 1108.1196
Fox, Harnik, Kopp, Tsali 1109.4398




nonrelativistic relativistic

Xt No>Y+N q+q—xtx
104 pb —10%pb
Described by Assume described by
Effective field theory effective field theory




Missing Momentum = Missing Mass?

CMS Experiment at LHC, CERN

C S Data recorded: Tue Oct 4 02:50:32 2011 CEST
Run/Event: 177783 / 442962676

g Lumi section: 273

.

ak5PFJet 0, pt: 574.2 GeV

pfMet 0, pt: 598.3 GeV

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO11059Winter2012
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Matter and Energy in the
Universe: A Strange Recipe

Neutrinas: 0.1% - 5%
Baryvons: 4 +1% ‘
Rl SR . CMB: 0.01%

-
—
—
—

Cold Dark Matter:
29 + 4%

Dark Encrgy: 67 + 6%



Supernova Cosmology Project

_ No Big Bang

Age Universe

Supernovae

STANDARD
MODEL OF
COSMOLOGY

Q,=027+£0.03

Q, =0.73+£0.03

Q, =1.002+0.005

Q, =0.0445+0.0033

H, =72t 3km/s/Mpc

t,=13.7+0.3 Gyr
"Precision

Cosmology”
errors < few%



THE FUTURE?

A standard
model of

Cosmology
(2010-2015)

precision
<1%

DM? DE?



A SUMMARY

Dark Matter is real:

e galaxies

* clusters
* large scale structure
e cosmic microwave background

We still do not know what it is:

* Direct detection has unconfirmed hints

* Indirect detection has tantalizing hints
* Collider searches see nothing yet

But we may have surprises...



