The 2013 CERN – Latin-American School of HEP Arequipa, Peru, 6-19 March 2013

Yossi Nir (Weizmann Institute of Science)

Plan of Lectures

- 1. Introduction
 - Definitions and Motivation
 - Flavor in the Standard Model
- 2. Past: What have we learned?
 - Lessons from the B-factories
- 3. Present: The open questions
 - The NP flavor puzzle
 - Minimal Flavor Violation
 - The SM flavor puzzle
 - The flavor of ν
- 4. Future: What will we learn?
 - Flavor@LHC
 - The flavor of h

What are flavors?

Copies of the same gauge representation: $SU(3)_{\rm C} \times U(1)_{\rm EM}$

Up-type quarks	$(3)_{+2/3}$	u,c,t
Down-type quarks	$(3)_{-1/3}$	d,s,b
Charged leptons	$(1)_{-1}$	e, μ, au
Neutrinos	$(1)_{0}$	$ u_1, u_2, u_3$

What are flavors?

In the interaction basis: $SU(3)_{\rm C} \times SU(2)_{\rm L} \times U(1)_{\rm Y}$

Quark doublets	$(3,2)_{\pm 1/6}$	Q_{Li}
Up-type quark singlets	$(3,1)_{+2/3}$	U_{Ri}
Down-type quark singlets	$(3,1)_{-1/3}$	D_{Ri}
Lepton doublets	$(1,2)_{-1/2}$	L_{Li}
Charged lepton singlets	$(1,1)_{-1}$	E_{Ri}

In QCD: $SU(3)_{\rm C}$ Quarks

 $(3) \quad u, d, s, c, b, t$

What is flavor physics?

- Interactions that distinguish among the generations:
 - Neither strong nor electromagnetic interactions
 - Within the SM: Only weak and Yukawa interactions
- In the interaction basis:
 - The weak interactions are also flavor-universal
 - The source of all SM flavor physics: Yukawa interactions among the gauge interaction eigenstates
- Flavor parameters:
 - Parameters with flavor index (m_i, V_{ij})

More flavor dictionary

- Flavor universal:
 - Coupling/paremeters $\propto \mathbf{1}_{ij}$ in flavor space
 - Example: strong interactions $\overline{U_R}G^{\mu a}\lambda^a\gamma_\mu \mathbf{1}U_R$
- Flavor diagonal:
 - Coupling/paremeters that are diagonal in flavor space
 - Example: Yukawa interactions in mass basis $\overline{U_L} \lambda_u U_R H, \quad \lambda_u = \text{diag}(y_u, y_c, y_t)$

And more flavor dictionary

- Flavor changing:
 - Initial flavor number \neq final flavor number
 - Flavor number = # particles # antiparticles
 - $B \to \psi K \quad (\bar{b} \to \bar{c}c\bar{s}); K^- \to \mu^- \overline{\nu_2} \quad (s\bar{u} \to \mu^- \overline{\nu_2})$
- Flavor changing neutral current (FCNC) processes:
 - Flavor changing processes that involve either U or D but not both and/or either ℓ^- or ν but not both
 - $-\mu \to e\gamma; K \to \pi \nu \bar{\nu} \ (s \to d\nu \bar{\nu}); D^0 \overline{D}^0 \text{ mixing } (c\bar{u} \to u\bar{c})...$
 - FCNC are highly suppressed in the SM

Why is flavor physics interesting?

- Flavor physics is sensitive to new physics at $\Lambda_{\rm NP} \gg E_{\rm experiment}$
- The Standard Model flavor puzzle: Why are the flavor parameters small and hierarchical? (Why) are the neutrino flavor parameters different?
- The New Physics flavor puzzle: If there is NP at the TeV scale, why are FCNC so small?

A brief history of FV

- $\Gamma(K \to \mu \mu) \ll \Gamma(K \to \mu \nu) \implies \text{Charm [GIM, 1970]}$
- $\Delta m_K \implies m_c \sim 1.5 \; GeV$ [Gaillard-Lee, 1974]
- $\varepsilon_K \neq 0 \implies \text{Third generation [KM, 1973]}$
- $\Delta m_B \implies m_t \gg m_W$ [Various, 1986]

What is CP violation?

- Interactions that distinguish between particles and antiparticles (e.g. $e_L^- \leftrightarrow e_R^+$)
 - Neither strong nor electromagnetic interactions (Comment: θ_{QCD} is irrelevant to our discussion)
 - Within the SM: Charged current weak interactions $(\delta_{\rm KM})$
 - With NP: many new sources of CPV
 - Manifestations of CP violation:
 - $\ \Gamma(B^0 \to \psi K_S) \neq \Gamma(\overline{B^0} \to \psi K_S)$
 - $-K_S, K_L \neq K_+, K_-$

Why is CPV interesting?

- Within the SM, a single CP violating parameter η : In addition, QCD = CP invariant (θ_{QCD} irrelevant) Strong predictive power (correlations + zeros) Excellent tests of the flavor sector
- η cannot explain the baryon asymmetry a puzzle: There must exist new sources of CPV Electroweak baryogenesis? (Testable at the LHC) Leptogenesis? (Window to Λ_{seesaw})

A brief history of CPV

- 1964 2000
 - $|\varepsilon| = (2.228 \pm 0.011) \times 10^{-3}; \ \mathcal{R}e(\varepsilon'/\varepsilon) = (1.65 \pm 0.26) \times 10^{-3}$

A brief history of CPV

- 1964 2000
 - $|\varepsilon| = (2.228 \pm 0.011) \times 10^{-3}; \ \mathcal{R}e(\varepsilon'/\varepsilon) = (1.65 \pm 0.26) \times 10^{-3}$
- $2000 2012, 5\sigma$
 - $S_{\psi K_S} = +0.68 \pm 0.02$
 - $S_{\phi K_S} = +0.74 \pm 0.12, \ S_{\eta' K_S} = +0.59 \pm 0.07, \ S_{f K_S} = +0.69 \pm 0.11$
 - $S_{K^+K^-K_S} = +0.68 \pm 0.10$
 - $S_{\pi^+\pi^-} = -0.65 \pm 0.07, C_{\pi^+\pi^-} = -0.36 \pm 0.06$
 - $S_{\psi\pi^0} = -0.93 \pm 0.15, S_{D^+D^-} = -0.98 \pm 0.17,$ $S_{D^{*+}D^{*-}} = -0.77 \pm 0.10$
 - $\mathcal{A}_{K^{\mp}\pi^{\pm}} = -0.087 \pm 0.008$
 - $\mathcal{A}_{D_+K^{\pm}} = +0.19 \pm 0.03$

The Flavor Factories

- B-factories: Belle and BaBar Asymmetric $e^+ - e^-$ colliders producing $\Upsilon(4S) \to B\bar{B}$
- Tevatron: CDF and D0 $p - \bar{p}$ colliders at 2 TeV $(B_s...)$
- LHC: LHCb, ATLAS, CMS
- Hypothetical future: Super-B, LHCb-upgrade...

The Standard Model

The Standard Model

- $G_{\rm SM} = SU(3)_C \times SU(2)_L \times U(1)_Y$
- $\langle \phi(1,2)_{+1/2} \rangle \neq 0$ breaks $G_{\rm SM} \to SU(3)_C \times U(1)_{EM}$
- Quarks: $3 \times \{Q_L(3,2)_{+1/6} + U_R(3,1)_{+2/3} + D_R(3,1)_{-1/3}\}$ Leptons: $3 \times \{L_L(1,2)_{-1/2} + E_R(1,1)_{-1}\}$

$$\mathcal{L}_{\mathrm{SM}} = \mathcal{L}_{\mathrm{kinetic+gauge}} + \mathcal{L}_{\mathrm{Higgs}} + \mathcal{L}_{\mathrm{Yukawa}}$$

- $\mathcal{L}_{\rm SM}$ depends on 18 parameters
- All have been measured

The Standard Model

Flavor Symmetry

- $\mathcal{L}_{\text{kinetic+gauge}} + \mathcal{L}_{\text{Higgs}}$ has a large global symmetry: $G_{\text{global}} = [U(3)]^5$
- $Q_L \to V_Q Q_L$, $U_R \to V_U U_R$, $D_R \to V_D D_R$, $L_L \to V_L L_L$, $E_R \to V_E E_R$
- Take, for example $\mathcal{L}_{\text{kinetic+gauge}}$ for $Q_L(3,2)_{+1/6}$: $i\overline{Q_L}_i(\partial_\mu + \frac{i}{2}g_s G^a_\mu \lambda^a + \frac{i}{2}g_s W^b_\mu \tau^b + \frac{i}{6}g' B_\mu)\gamma^\mu \delta_{ij} Q_{Lj}$

•
$$\overline{Q_L} \mathbf{1} Q_L \rightarrow \overline{Q_L} V_Q^{\dagger} \mathbf{1} V_Q Q_L = \overline{Q_L} \mathbf{1} Q_L$$

Flavor Violation

- $\mathcal{L}_{\text{Yukawa}} = \overline{Q_L}_i Y_{ij}^u \tilde{\phi} U_{Rj} + \overline{Q_L}_i Y_{ij}^d \phi D_{Rj} + \overline{L_L}_i Y_{ij}^e \phi E_{Rj}$ breaks $G_{\text{global}} \to U(1)_B \times U(1)_e \times U(1)_\mu \times U(1)_\tau$
- Flavor physics: interactions that break the $[SU(3)]^5$ symmetry

- $Q_L \to V_Q Q_L$, $U_R \to V_U U_R$, $D_R \to V_D D_R$ = Change of interaction basis
- $Y^d \to V_Q Y^d V_D^{\dagger}, \quad Y^u \to V_Q Y^u V_U^{\dagger}$
- Can be used to reduce the number of parameters in Y^u, Y^d

The Standard Model

Counting flavor parameters

- Quark sector:
 - $Y_u, Y_d \implies 2 \times [9_R + 9_I]$
 - $[SU(3)]_q^3 \rightarrow U(1)_B \implies -3 \times [3_R + 6_I] + 1_I$
 - Physical parameters: $9_R + 1_I$

- Lepton sector:
 - $Y_e \implies 9_R + 9_I$
 - $[SU(3)]^2_{\ell} \to [U(1)]^3 \implies -2 \times [3_R + 6_I] + 3_I$
 - Physical parameters: 3_R

The Standard Model

The quark flavor parameters

- Convenient (but not unique) interactions basis: $Y^d \to V_Q Y^d V_D^{\dagger} = \lambda^d, \quad Y^u \to V_Q Y^u V_U^{\dagger} = V^{\dagger} \lambda^u$
- λ^d, λ^u diagonal and real:

$$\lambda^{d} = \begin{pmatrix} y_{d} & & \\ & y_{s} & \\ & & y_{b} \end{pmatrix}; \quad \lambda^{u} = \begin{pmatrix} y_{u} & & \\ & y_{c} & \\ & & y_{t} \end{pmatrix}$$

• V unitary with 3 real (λ, A, ρ) and 1 imaginary (η) parameters:

$$V \simeq \begin{pmatrix} 1 & \lambda & A\lambda^3(\rho + i\eta) \\ -\lambda & 1 & A\lambda^2 \\ A\lambda^3(1 - \rho + i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

• Another convenient basis: $Y^d \to V\lambda^d$, $Y^u \to \lambda^u$

Kobayashi and Maskawa

CP violation \leftrightarrow Complex couplings:

- Hermiticity: $\mathcal{L} \sim g_{ijk}\phi_i\phi_j\phi_k + g_{ijk}^*\phi_i^\dagger\phi_j^\dagger\phi_k^\dagger$
- CP transformation: $\phi_i \phi_j \phi_k \leftrightarrow \phi_i^{\dagger} \phi_j^{\dagger} \phi_k^{\dagger}$
- CP is a good symmetry if $g_{ijk} = g_{ijk}^*$

The number of real and imaginary quark flavor parameters:

- With two generations: $2 \times (4_R + 4_I) - 3 \times (1_R + 3_I) + 1_I = 5_R + 0_I$
- With three generations: $2 \times (9_R + 9_I) - 3 \times (3_R + 6_I) + 1_I = 9_R + 1_I$
- The two generation SM is CP conserving The three generation SM is CP violating

The mass basis

- To transform to the mass basis: $D_L \to D_L$, $U_L \to VU_L$
- $m_q = y_q \langle \phi \rangle$
- V = The CKM matrix

$$\mathcal{L}_W = \frac{g}{\sqrt{2}} \overline{U_L} V \gamma^{\mu} D_L W_{\mu}^+ + \text{h.c.}$$
$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

• η - the only source of CP violation

Intermediate summary I

- Flavor violation: m_q , V_{CKM}
- Flavor changing processes: $V_{\rm CKM}$
- CP violation: η
- FFCC: tree level
- FCNC: loop- (α_2^2) , CKM- (V_{ij}) , GIM- $(\frac{m_2^2 m_1^2}{m_W^2})$ suppressed

What have we learned?

The three types of CPV

FPCP

 $S_{\psi K_S}$

• Babar/Belle:
$$A_{\psi K_S}(t) = \frac{\frac{d\Gamma}{dt}[\overline{B^0_{\text{phys}}}(t) \rightarrow \psi K_S] - \frac{d\Gamma}{dt}[B^0_{\text{phys}}(t) \rightarrow \psi K_S]}{\frac{d\Gamma}{dt}[\overline{B^0_{\text{phys}}}(t) \rightarrow \psi K_S] + \frac{d\Gamma}{dt}[B^0_{\text{phys}}(t) \rightarrow \psi K_S]}$$

• Theory: $A_{\psi K_S}(t)$ dominated by interference between $A(B^0 \to \psi K_S)$ and $A(B^0 \to \overline{B^0} \to \psi K_S)$

•
$$\Longrightarrow A_{\psi K_S}(t) = S_{\psi K_S} \sin(\Delta m_B t)$$

 $\implies S_{\psi K_S} = \mathcal{I}m \left[\frac{A(B^0 \to \overline{B^0})}{|A(B^0 \to \overline{B^0})|} \frac{A(\overline{B^0} \to \psi K_S)}{A(B^0 \to \psi K_S)} \right]$

•
$$S_{\psi K_S} = \mathcal{I}m\left[\frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*} \frac{V_{cb} V_{cd}^*}{V_{cb}^* V_{cd}}\right] = \frac{2\eta(1-\rho)}{\eta^2 + (1-\rho)^2}$$

- In the language of the unitarity triangle: $S_{\psi K_S} = \sin 2\beta$
- The approximations involved are better than one percent!
- Experiments: $S_{\psi K_S} = 0.68 \pm 0.02$

The Unitarity Triangle

• A geometrical presentation of $V_{ub}^* V_{ud} + V_{tb}^* V_{td} + V_{cb}^* V_{cd} = 0$

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

The Unitarity Triangle

• A geometrical presentation of $V_{ub}^* V_{ud} + V_{tb}^* V_{td} + V_{cb}^* V_{cd} = 0$

	V_{ud}	V_{us}	V_{ub}	αt
V =	V_{cd}	V_{cs}	V_{cb}	β
	\bigvee_{td}	V_{ts}	V_{tb}	с

• Rescale and rotate: $A\lambda^{3} [(\rho + i\eta) + (1 - \rho - i\eta) + (-1)] = 0$ $V = \begin{pmatrix} 1 - \frac{\lambda^{2}}{2} & \lambda & A\lambda^{3}(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^{2}}{2} & A\lambda^{2} \\ A\lambda^{3}(1 - \rho - i\eta) & -A\lambda^{2} & 1 \end{pmatrix} \xrightarrow{(\rho, \eta)} (\rho, \eta)$ (1, 0)Wolfenstein (83); Buras *et al.* (94)

$$\alpha \equiv \phi_2; \quad \beta \equiv \phi_1; \quad \gamma \equiv \phi_3$$

Testing CKM – Take I

- Assume: CKM matrix is the only source of FV and CPV
- λ known from $K \to \pi \ell \nu$ A known from $b \to c \ell \nu$
- Many observables are $f(\rho, \eta)$:

$$-b \rightarrow u\ell\nu \implies \propto |V_{ub}/V_{cb}|^2 \propto \rho^2 + \eta^2$$

$$-\Delta m_{B_d}/\Delta m_{B_s} \implies \propto |V_{td}/V_{ts}|^2 \propto (1-\rho)^2 + \eta^2$$

$$-S_{\psi K_S} \implies \frac{2\eta(1-\rho)}{(1-\rho)^2 + \eta^2}$$

$$-S_{\rho\rho}(\alpha)$$

$$-\mathcal{A}_{DK}(\gamma)$$

$$-\epsilon_K$$

The B-factories Plot

 $\operatorname{CKMFitter}$

Very likely, the CKM mechanism dominates FV and CPV

CPC vs. CPV

Very likely, the KM mechanism dominates CP violation

$S_{\psi K_S}$ with NP

• Reminder:
$$S_{\psi K_S} = \mathcal{I}m\left[\frac{A(B^0 \to \overline{B^0})}{|A(B^0 \to \overline{B^0})|} \frac{A(\overline{B^0} \to \psi K_S)}{A(B^0 \to \psi K_S)}\right]$$

- NP contributions to the tree level decay amplitude negligible
- NP contributions to the loop + CKM suppressed mixing amplitude could be large

• Define
$$h_d e^{2i\sigma_d} = \frac{A^{\text{NP}}(B^0 \to \overline{B}^0)}{A^{\text{SM}}(B^0 \to \overline{B}^0)}$$

 $b \underbrace{\tilde{g}}_{d_{1,2,3}} d b \underbrace{t}_{d_{1,2,3}} d b \underbrace{t}_{$

Testing CKM - take II

- Assume: NP in leading tree decays negligible
- Allow arbitrary NP in loop processes
- Use only tree decays and $B^0 \overline{B}^0$ mixing
- Use $|V_{ub}/V_{cb}|$, \mathcal{A}_{DK} , $S_{\psi K}$, $S_{\rho\rho}$, Δm_{B_d} , \mathcal{A}_{SL}^d
- Fit to η , ρ , h_d , σ_d
- Find whether $\eta = 0$ is allowed If not \implies The KM mechanism is at work
- Find whether $h_d \gg 1$ is allowed If not \implies The KM mechanism is dominant

 $\eta \neq 0$?

• The KM mechanism is at work
What have we learned?

 $h_d \ll 1$?

- The KM mechanism dominates CP violation
- The CKM mechanism is a major player in flavor violation

FPCP

Is CPV in $K \rightarrow \pi\pi$ small because of flavor?

SM:

- $\epsilon \sim 10^{-3}, \, \epsilon' \sim 10^{-5}$ because of flavor suppression
- Some CP violating phases are order one

Approximate CP:

- All CPV phases are small
- All CP asymmetries are small

Is CPV in $K \rightarrow \pi\pi$ small because of flavor?

SM:

- $\epsilon \sim 10^{-3}, \, \epsilon' \sim 10^{-5}$ because of flavor suppression
- Some CP violating phases are order one

Approximate CP:

- All CPV phases are small
- All CP asymmetries are small

B Physics: $S_{\psi K} \sim 0.7$

 \implies Some CP violating phases are indeed $\mathcal{O}(1)$

Is CP violated in $\Delta B = 1$ processes?

SM:

• Indirect $(A(M^0 \to \overline{M}{}^0))$ and direct $(A(M \to f))$ CP violations are both large

Superweak:

• There is no direct $(A(M \to f))$ CP violation

K Physics: $\epsilon'/\epsilon = (1.67 \pm 0.26) \times 10^{-3}$

 \implies CP is violated in $\Delta S = 1$ processes $(s \rightarrow u\bar{u}d)$

Is CP violated in $\Delta B = 1$ processes?

SM:

• Indirect $(A(M^0 \to \overline{M}{}^0))$ and direct $(A(M \to f))$ CP violations are both large

Superweak:

• There is no direct $(A(M \to f))$ CP violation

K Physics: $\epsilon'/\epsilon = (1.67 \pm 0.26) \times 10^{-3}$

 \implies CP is violated in $\Delta S = 1$ processes $(s \rightarrow u\bar{u}d)$

B Physics: $\mathcal{A}_{K^{\mp}\pi^{\pm}} = -0.097 \pm 0.012, C_{\pi^{+}\pi^{-}} = -0.38 \pm 0.06,$ $\mathcal{A}_{K^{\mp}\rho^{0}} = 0.37 \pm 0.10$

 \implies CP is violated in $\Delta B = 1$ processes $(b \rightarrow u\bar{u}s, b \rightarrow u\bar{u}d)$

Intermediate summary II

- The KM phase is different from zero (SM violates CP)
- The KM mechanism is the dominant source of the CP violation observed in meson decays
- Complete alternatives to the KM mechanism are excluded (Superweak, Approximate CP)
- No evidence for corrections to CKM
- NP contributions to the observed FCNC are at most comparable to the CKM contributions
- NP contributions are very small in $s \to d, c \to u, b \to d, b \to s$

Flavor Physics and CP Violation

The SM = Low energy effective theory

- 1. Gravity $\implies \Lambda_{\text{Planck}} \sim 10^{19} \text{ GeV}$
- 2. $m_{\nu} \neq 0 \Longrightarrow \Lambda_{\text{Seesaw}} \leq 10^{15} \ GeV$
- 3. m_H^2 -fine tuning $\Longrightarrow \Lambda_{\text{top-partners}} \sim TeV$ Dark matter $\Longrightarrow \Lambda_{\text{wimp}} \sim TeV$

- The SM = Low energy effective theory
- Must write non-renormalizable terms suppressed by $\Lambda_{\rm NP}^{d-4}$

•
$$\mathcal{L}_{d=5} = \frac{y_{ij}^{\nu}}{\Lambda_{\text{seesaw}}} L_i L_j \phi \phi$$

• $\mathcal{L}_{d=6}$ contains many flavor changing operators

New Physics

• The effects of new physics at a high energy scale $\Lambda_{\rm NP}$ can be presented as higher dimension operators

- For example, we expect the following dimension-six operators: $\frac{z_{sd}}{\Lambda_{\rm NP}^2} (\overline{d_L} \gamma_\mu s_L)^2 + \frac{z_{cu}}{\Lambda_{\rm NP}^2} (\overline{c_L} \gamma_\mu u_L)^2 + \frac{z_{bd}}{\Lambda_{\rm NP}^2} (\overline{d_L} \gamma_\mu b_L)^2 + \frac{z_{bs}}{\Lambda_{\rm NP}^2} (\overline{s_L} \gamma_\mu b_L)^2$
- New contribution to neutral meson mixing, *e.g.* $\Delta m_B = \int_{B}^{2} |z_{bd}|$

$$\frac{\Delta m_B}{m_B} \sim \frac{f_B}{3} \times \frac{|z_{bd}|}{\Lambda_{\rm NP}^2}$$

• Generic flavor structure $\equiv z_{ij} \sim 1$ or, perhaps, loop – factor

Some data

$S_{\psi\phi}$	-0.04 ± 0.09
$S_{\psi K_S}$	0.68 ± 0.02
$A_{\Gamma}/y_{ m CP}$	≤ 0.2
ϵ_K	2.3×10^{-3}
$\Delta m_{B_s}/m_{B_s}$	2.1×10^{-12}
$\Delta m_B/m_B$	6.3×10^{-14}
$\Delta m_D/m_D$	8.7×10^{-15}
$\Delta m_K/m_K$	7.0×10^{-15}

High Scale?

• For $z_{ij} \sim 1$ (and $\mathcal{I}m(z_{ij}) \sim 1$):

		$\Lambda_{ m NP}\gtrsim$
$\Delta m_K/m_K$	7.0×10^{-15}	$1000 { m TeV}$
$\Delta m_D/m_D$	8.7×10^{-15}	$1000 { m TeV}$
$\Delta m_B/m_B$	6.3×10^{-14}	$400 { m TeV}$
$\Delta m_{B_s}/m_{B_s}$	2.1×10^{-12}	$70 { m TeV}$
ϵ_K	2.3×10^{-3}	$20000~{\rm TeV}$
$A_{\Gamma}/y_{ m CP}$	≤ 0.2	$3000 { m TeV}$
$S_{\psi K_S}$	0.68 ± 0.02	$800 { m TeV}$
$S_{\psi\phi}$	-0.04 ± 0.09	$200 { m ~TeV}$

High Scale

- For $z_{ij} \sim 1$, $\Lambda_{\rm NP} \gg 1000 \ TeV$
- For $z_{ij} \sim \alpha_2^2$, $\Lambda_{\rm NP} \gg 100 \ TeV$

Did we misinterpret the Higgs fine tuning problem?

Did we misinterpret the dark matter puzzle?

Small (hierachical?) flavor parameters?

• For $\Lambda_{\rm NP} \sim 1 \ TeV$:

		$z_{ij}\lesssim$
$\Delta m_K/m_K$	7.0×10^{-15}	8×10^{-7}
$\Delta m_D/m_D$	8.7×10^{-15}	5×10^{-7}
$\Delta m_B/m_B$	6.3×10^{-14}	5×10^{-6}
$\Delta m_{B_s}/m_{B_s}$	2.1×10^{-12}	2×10^{-4}
		$\mathcal{I}m(z_{ij}) \lesssim$
ϵ_K	2.3×10^{-3}	$\frac{\mathcal{I}m(z_{ij}) \lesssim}{6 \times 10^{-9}}$
$\epsilon_K \ A_\Gamma/y_{ m CP}$	2.3×10^{-3} ≤ 0.2	$\mathcal{I}m(z_{ij}) \lesssim 6 \times 10^{-9} \\ 1 \times 10^{-7}$
$\epsilon_K \ A_\Gamma/y_{ m CP} \ S_{\psi K_S}$	2.3×10^{-3} ≤ 0.2 0.68 ± 0.02	$\mathcal{I}m(z_{ij}) \lesssim$ 6×10^{-9} 1×10^{-7} 1×10^{-6}

Small (hierachical?) flavor parameters

- For $\Lambda_{\rm NP} \sim {\rm TeV}, \, \mathcal{I}m(z_{sd}) < 6 \times 10^{-9}$
- For $\Lambda_{\rm NP} \sim {\rm TeV}, |z_{bs}| < 2 \times 10^{-4}$

 \downarrow

The flavor structure of NP@TeV must be highly non-generic

How? Why? = The NP flavor puzzle

How does the SM ($\Lambda_{\rm SM} \sim m_W$) do it?

		$z_{ij}\sim$	$z^{ m SM}_{ij}$
$\Delta m_K/m_K$	7.0×10^{-15}	5×10^{-9}	$lpha_2^2 y_c^2 V_{cd} V_{cs} ^2$
$\Delta m_D/m_D$	8.7×10^{-15}	5×10^{-9}	Long Distance
$\Delta m_B/m_B$	6.3×10^{-14}	7×10^{-8}	$lpha_2^2 y_t^2 V_{td}V_{tb} ^2$
$\Delta m_{B_s}/m_{B_s}$	2.1×10^{-12}	2×10^{-6}	$lpha_2^2 y_t^2 V_{ts}V_{tb} ^2$
		$rac{\mathcal{I}m(z_{ij})}{ z_{ij} }\sim$	$rac{\mathcal{I}m(z_{ij}^{ ext{SM}})}{ z_{ij}^{ ext{SM}} }$
ϵ_K	2.3×10^{-3}	$\mathcal{O}(0.01)$	$\mathcal{I}m \frac{y_t^2 (V_{td}^* V_{ts})^2}{y_c^2 (V_{cd}^* V_{cs})^2} \sim 0.01$
A_{Γ}	≤ 0.004	≤ 0.2	0
$S_{\psi K_S}$	0.67 ± 0.02	$\mathcal{O}(1)$	$\mathcal{I}m\frac{V_{tb}V_{td}^*}{V_{tb}^*V_{td}}\frac{V_{cb}^*V_{cd}}{V_{cb}V_{cd}^*}\sim 0.7$
$S_{\psi\phi}$	≤ 1	≤ 1	$\mathcal{I}m rac{V_{tb}V_{ts}^*}{V_{tb}^*V_{ts}} rac{V_{cb}^*V_{cs}}{V_{cb}V_{cs}^*} \sim 0.02$

• Does the new physics know the SM Yukawa structure? (MFV)

Supersymmetry for Phenomenologists

80 real + 44 imaginary parameters

The $D^0 - \overline{D^0}$ mixing challenge

Take, for example, the contribution from the first two generations of squark doublets to $D - \overline{D}$ mixing:

$$\Lambda_{\rm NP} = m_{\tilde{Q}}$$

$$z_{cu} \sim 3.8 \times 10^{-5} \frac{(\Delta m_{\tilde{Q}}^2)^2}{m_{\tilde{Q}}^4} (K_{21}^{u_L} K_{11}^{u_L*})^2$$

$$\implies \frac{TeV}{m_{\tilde{Q}}} \times \frac{\Delta m_{\tilde{Q}}^2}{m_{\tilde{Q}}^2} \times \sin 2\theta_u \le 0.05 - 0.10$$

How can Supersymmetry do it?

$$\frac{TeV}{\tilde{m}} \times \frac{\Delta \tilde{m}_{ij}^2}{\tilde{m}^2} \times K_{ij} \ll 1$$

Why? = The SUSY flavor puzzle

How can Supersymmetry do it?

$$\frac{TeV}{\tilde{m}} \times \frac{\Delta \tilde{m}_{ij}^2}{\tilde{m}^2} \times K_{ij} \ll 1$$

Why? = The SUSY flavor puzzle

- Solutions:
 - Heaviness: $\tilde{m} \gg 1 \ TeV$
 - Degeneracy: $\Delta \tilde{m}_{ij}^2 \ll \tilde{m}^2$
 - Alignment: $K_{ij} \ll 1$

- Split Supersymmetry
- Gauge-mediation
- Horizontal symmetries

Gauge Mediation vs. FN Symmetry

	Gauge mediation	FN symmetry
$\Delta \tilde{m}_{12}^2/\tilde{m}^2$	$(y_c^2/r_3) \sim 10^{-5}$	$1/r_3 \sim 0.2$
K^u_{12}	$y_b^2 V_{ub} V_{cb} \sim 10^{-7}$	$ V_{us} \sim 0.2$
K^d_{12}	$y_t^2 V_{td} V_{ts} \sim 10^{-4}$	$\leq V_{us} \sim 10^{-4} - 10^{-2}$

• Can, in principle, distinguish in experiment

Gauge Mediation

•
$$\widetilde{M}_{\widetilde{q}_L}^2 = \widetilde{m}^2 \mathbf{1} + D_{q_L} \mathbf{1} + v_q^2 Y_q Y_q^{\dagger}$$

• RGE:
$$\tilde{m}_{\tilde{Q}_L}^2(m_Z) = \tilde{m}^2(r_3 \mathbf{1} + c_u Y_u Y_u^{\dagger} + c_d Y_d Y_d^{\dagger})$$

- The only source of flavor violation = The SM Yukawa couplings
- An example of minimal flavor violation (MFV)
- MFV solves all SUSY flavor problems

Flavor Physics and CP Violation

Minimal Flavor Violation

Definition

A class of models that obey the following principle:

- The only breaking of flavor universality comes from $Y_u, Y_d \ (\lambda_d, \lambda_u, V)$
- The only spurions that break $SU(3)_Q \times SU(3)_U \times SU(3)_D$ are $Y_u(3, \overline{3}, 1)$ and $Y_d(3, 1, \overline{3})$

In MFV models, the NP flavor puzzle is solved

Operationally...

- 1. SM = Low energy effective theory: All higher dimensional operators, constructed from SM fields and the Y_q -spurions are formally invariant under $SU(3)^3$
- 2. A new high energy physics theory: All operators, constructed from SM and NP fields and the Y_q -spurions are formally invariant under $SU(3)^3$ Example: Gauge mediated supersymmetry breaking (GMSB)

Example (1)

- Consider $\frac{z_{sd}}{\Lambda_{\rm NP}^2} (\overline{s_L} \gamma_\mu d_L)^2$
- $\overline{s_L} \in (\overline{3}, 1, 1), \quad d_L \in (3, 1, 1) \implies (\overline{s_L} \gamma_\mu d_L) \in (8, 1, 1)$
- $Y_d Y_d^{\dagger} = (\bar{3}, 1, 3) \times (3, 1, \bar{3}) \supset (8, 1, 1)$ $Y_u Y_u^{\dagger} = (\bar{3}, 3, 1) \times (3, \bar{3}, 1) \supset (8, 1, 1)$
- But we are in the down mass basis: $Y_d = \lambda_d \Longrightarrow (Y_d Y_d^{\dagger})_{12} = 0$
- Must be $(Y_u Y_u^{\dagger})_{12} = (V^{\dagger} \lambda_u^2 V)_{12} \approx y_t^2 V_{td}^* V_{ts}$
- $z_{sd} \propto y_t^4 (V_{td}^* V_{ts})^2$
- $z_{cu} \propto y_b^4 (V_{ub} V_{cb}^*)^2$ $z_{bd} \propto y_t^4 (V_{td}^* V_{tb})^2$ $z_{bs} \propto y_t^4 (V_{ts}^* V_{tb})^2$
- With the help of a loop factor, phenomenologically OK!

Example (2)

- $\tilde{Q}_L^{\dagger} \tilde{Q}_L = (\bar{3}, 1, 1) \times (3, 1, 1) = (1 + 8, 1, 1)$
- $\implies m_{\tilde{Q}_L}^2 = \mathbf{1} + a_u Y_u Y_u^{\dagger} + a_d Y_d Y_d^{\dagger}$ $Y_d Y_d^{\dagger} - \text{FC in u-basis;} \quad Y_u Y_u^{\dagger} - \text{FC in d-basis}$
- $\tilde{U}_R^{\dagger} \tilde{U}_R = (1, \bar{3}, 1) \times (1, 3, 1) = (1, 1+8, 1)$
- $\implies m_{\tilde{U}_R}^2 = \mathbf{1} + b_u Y_u^{\dagger} Y_u \text{no FC!}$
- $\tilde{D}_R^{\dagger} \tilde{D}_R = (1, 1, \bar{3}) \times (1, 1, 3) = (1, 1, 1 + 8)$

•
$$\implies m_{\tilde{D}_R}^2 = \mathbf{1} + b_d Y_d^{\dagger} Y_d - \text{no FC!}$$

Example $(2 \rightarrow 1)$

GMSB, two generations:

•
$$\frac{\Delta m_{\tilde{d}_L}^2}{m_{\tilde{d}_L}^2} \sim y_c^2$$
, $K_{21}^{d_L^*} K_{11}^{d_L} = V_{cd}^* V_{cs}$

•
$$\frac{\Delta m_{\tilde{u}_L}^2}{m_{\tilde{d}_L}^2} \sim y_c^2$$
, $K_{21}^{u_L^*} K_{11}^{u_L} = \frac{y_s^2}{y_c^2} V_{us} V_{cs}^*$

Intermediate summary III

- NP@TeV with generic flavor structure is excluded
- The most extreme solution: MFV MFV = A class of NP models where...
- The only violation of the global $[SU(3)]_q^3$ symmetry = The Yukawa-spurions: $Y_u(3, \overline{3}, 1), \quad Y_d = (3, 1, \overline{3})$
- Examples: Gauge-, anomaly-, gaugino-mediated supersymmetry breaking
- The NP is subject to an approximate $[SU(2)]^3$ symmetry
- All FC processes $\propto V_{\rm CKM}$

Flavor Physics and CP Violation

The SM flavor puzzle

Smallness and Hierarchy

$$\begin{array}{ccccccccccccc} Y_t \sim 1, & Y_c \sim 10^{-2}, & Y_u \sim 10^{-5} \\ Y_b \sim 10^{-2}, & Y_s \sim 10^{-3}, & Y_d \sim 10^{-4} \\ Y_\tau \sim 10^{-2}, & Y_\mu \sim 10^{-3}, & Y_e \sim 10^{-6} \\ V_{us} |\sim 0.2, & |V_{cb}| \sim 0.04, & |V_{ub}| \sim 0.004, & \delta_{\mathrm{KM}} \sim 1 \end{array}$$

- For comparison: $g_s \sim 1$, $g \sim 0.6$, $g' \sim 0.3$, $\lambda \sim 1$
- The SM flavor parameters have structure: smallness and hierarchy
- Why? = The SM flavor puzzle
 - Approximate symmetry? [Froggatt-Nielsen]
 - Strong dynamics? [Nelson-Strassler]
 - Location in extra dimension? [Arkani-Hamed-Schmaltz]
 - ?

The Froggatt-Nielsen (FN) mechanism

- Approximate "horizontal" symmetry (e.g. $U(1)_H$)
- Small breaking parameter $\epsilon = \langle S_{-1} \rangle / \Lambda \ll 1$
- Selection rules:

$$-Y_{ij}^d \sim \epsilon^{H(Q_i) + H(\bar{d}_j) + H(\phi_d)}$$

$$-Y_{ij}^u \sim \epsilon^{H(Q_i) + H(\bar{u}_j) + H(\phi_u)}$$

$$-Y_{ij}^{\ell} \sim \epsilon^{H(L_i) + H(\bar{\ell}_j) + H(\phi_d)}$$

$$-Y_{ij}^{\nu} \sim \epsilon^{H(L_i) + H(L_j) + 2H(\phi_u)}$$

The SM flavor puzzle

The FN mechanism: An example

• $H(Q_i) = 2, 1, 0, \quad H(\bar{d}_j) = 2, 1, 0, \quad H(\phi_d) = 0$

$$\begin{array}{c} & \downarrow \\ & \downarrow \\ Y^{d} \sim \left(\begin{array}{ccc} \epsilon^{4} & \epsilon^{3} & \epsilon^{2} \\ \epsilon^{3} & \epsilon^{2} & \epsilon \\ \epsilon^{2} & \epsilon & 1 \end{array} \right)
\end{array}$$

- $Y_b: Y_s: Y_d \sim 1: \epsilon^2: \epsilon^4$
- $(V_L^d)_{12} \sim \epsilon$, $(V_L^d)_{23} \sim \epsilon$, $(V_L^d)_{13} \sim \epsilon^2$

The SM flavor puzzle

The FN mechanism: a viable model

- Approximate "horizontal" symmetry (e.g. $U(1)_H$)
- Small breaking parameter $\epsilon = \langle S_{-1} \rangle / \Lambda \ll 1$
- $10(2,1,0), \overline{5}(0,0,0)$

The FN mechanism: Predictions (quarks)

- In the quark sector: 8 FN charges, 9 observables
- One prediction that is independent of charge assignments: $|V_{ub}| \sim |V_{us}V_{cb}|$

Experimentally correct to within a factor of 2

• In addition, six inequalities:

 $|V_{us}| \gtrsim \frac{m_d}{m_s}, \frac{m_u}{m_c}; |V_{ub}| \gtrsim \frac{m_d}{m_b}, \frac{m_u}{m_t}; |V_{cb}| \gtrsim \frac{m_s}{m_b}, \frac{m_c}{m_t}$ Experimentally fulfilled

• When ordering the quarks by mass: $V_{CKM} \sim 1$ (diagonal terms not suppressed parameterically) Experimentally fulfilled

The SM flavor puzzle

The FN mechanism: Predictions (leptons)

- In the lepton sector: 5 FN charges, 9 observables
- Four predictions that are independent of charge assignments: $\begin{array}{l}
 m_{\nu_i}/m_{\nu_j} \sim |U_{ij}|^2 \\
 |U_{e3}| \sim |U_{e2}U_{\mu3}|
 \end{array}$
- In addition, three inequalities: $|U_{e2}| \gtrsim \frac{m_e}{m_{\mu}}; \quad |U_{e3}| \gtrsim \frac{m_e}{m_{\tau}}; \quad |U_{\mu3}| \gtrsim \frac{m_{\mu}}{m_{\tau}}$
- When ordering the leptons by mass: $U\sim {\bf 1}$

The flavor of ν

$\nu\textsc{-flavor}\xspace$ parameters for an archists

- $\Delta m_{21}^2 = (7.5 \pm 0.2) \times 10^{-5} \text{ eV}^2$, $|\Delta m_{32}^2| = (2.5 \pm 0.1) \times 10^{-3} \text{ eV}^2$
- $|U_{e2}| = 0.55 \pm 0.01$, $|U_{\mu3}| = 0.64 \pm 0.02$, $|U_{e3}| = 0.15 \pm 0.01$

Gonzalez-Garcia et al., 1209.3023
The flavor of ν

$\nu\textsc{-flavor}\xspace$ parameters for an archists

- $\Delta m_{21}^2 = (7.5 \pm 0.2) \times 10^{-5} \text{ eV}^2$, $|\Delta m_{32}^2| = (2.5 \pm 0.1) \times 10^{-3} \text{ eV}^2$
- $|U_{e2}| = 0.55 \pm 0.01$, $|U_{\mu3}| = 0.64 \pm 0.02$, $|U_{e3}| = 0.15 \pm 0.01$

Gonzalez-Garcia et al., 1209.3023

- $|U_{\mu 3}| > \text{any } |V_{ij}|;$
- $|U_{e2}| > \text{any } |V_{ij}|$
- $|U_{e3}| \not\ll |U_{e2}U_{\mu3}|$
- $m_2/m_3 \gtrsim 1/6 > \text{any } m_i/m_j \text{ for charged fermions}$
- So far, neither smallness nor hierarchy
- Anarchy? (Consistent with FN)

The flavor of ν

$\nu\textsc{-flavor}\xspace$ parameters for tribimaximalists

- $\Delta m_{21}^2 = (7.5 \pm 0.2) \times 10^{-5} \text{ eV}^2$, $|\Delta m_{32}^2| = (2.5 \pm 0.1) \times 10^{-3} \text{ eV}^2$
- $|U_{e2}| = 0.55 \pm 0.01$, $|U_{\mu3}| = 0.64 \pm 0.02$, $|U_{e3}| = 0.15 \pm 0.01$

Gonzalez-Garcia et al., 1209.3023

The flavor of ν

$\nu\textsc{-flavor}\xspace$ parameters for tribimaximalists

- $\Delta m_{21}^2 = (7.5 \pm 0.2) \times 10^{-5} \text{ eV}^2$, $|\Delta m_{32}^2| = (2.5 \pm 0.1) \times 10^{-3} \text{ eV}^2$
- $|U_{e2}| = 0.55 \pm 0.01$, $|U_{\mu3}| = 0.64 \pm 0.02$, $|U_{e3}| = 0.15 \pm 0.01$

Gonzalez-Garcia et al., 1209.3023

- $\sqrt{1/3}$ = trimaximal mixing: $|U_{e2}| = \sqrt{1/3} 0.03;$
- $\sqrt{1/2}$ = bimaximal mixing: $|U_{\mu3}| = \sqrt{1/2} 0.06;$
- 0 = bimaximal mixing: $|U_{e3}| = 0 + 0.15$
- Tribimaximal mixing?
- Non-Abelian flavor symmetry? A_4 ?

Structure is in the eye of the beholder

$$|U|_{3\sigma} = \begin{pmatrix} 0.79 - 0.85 & 0.51 - 0.59 & 0.13 - 0.18 \\ 0.20 - 0.54 & 0.42 - 0.73 & 0.58 - 0.81 \\ 0.21 - 0.55 & 0.41 - 0.73 & 0.57 - 0.80 \end{pmatrix}$$

• Tribimaximal-ists:

$$|U|_{\text{TBM}} = \begin{pmatrix} 0.82 & 0.58 & 0\\ 0.41 & 0.58 & 0.71\\ 0.41 & 0.58 & 0.71 \end{pmatrix}$$

• Anarch-ists:

$$|U|_{\text{anarchy}} = \begin{pmatrix} \mathcal{O}(0.6) & \mathcal{O}(0.6) & \mathcal{O}(0.6) \\ \mathcal{O}(0.6) & \mathcal{O}(0.6) & \mathcal{O}(0.6) \\ \mathcal{O}(0.6) & \mathcal{O}(0.6) & \mathcal{O}(0.6) \end{pmatrix}$$

Flavor Physics and CP Violation

Flavor Physics at the LHC era

- If ATLAS/CMS observe no NP...
- and flavor factories observe no NP...

Flavor Physics at the LHC era

- If ATLAS/CMS observe no NP...
- but flavor factories observe NP...
 - We may have misinterpreted the fine-tuning problem
 - We may have misinterpreted the dark matter puzzle
 - Flavor will provide the only clue for an accessible scale of NP

Flavor Physics at the LHC era

ATLAS/CMS will, hopefully, observe NP at $\Lambda_{\rm NP} \leq TeV$; In combination with flavor factories, we may...

- Understand how the NP flavor puzzle is (not) solved
- Probe NP at $\Lambda_{\rm NP} \gg TeV$
- Get hints about the solution to the SM flavor puzzle

What will we learn?

Intermediate summary IV

Intermediate summary IV

Testing MFV at ATLAS/CMS

- Think of new quarks $Q_j \to (W, Z, h)q_i$
- Spectrum degenerate (1) or hierarchical (Y_q)
- Decay modes determined by V_{CKM}
- How can we exclude MFV at ATLAS/CMS?

Apologies to BABAR and BELLE

• The CKM matrix a-la BABAR/BELLE:

 $V_{\text{CKM}} = \begin{pmatrix} 0.97383 \pm 0.00024 & 0.2272 \pm 0.0010 & (3.96 \pm 0.09) \times 10^{-3} \\ 0.2271 \pm 0.0010 & 0.97296 \pm 0.00024 & (4.221^{+0.010}_{-0.080}) \times 10^{-2} \\ (8.14^{+0.32}_{-0.64}) \times 10^{-3} & (4.161^{+0.012}_{-0.078}) \times 10^{-2} & 0.999100^{+0.000034}_{-0.000004} \end{pmatrix}$

Apologies to BABAR and BELLE

- The CKM matrix a-la BABAR/BELLE:
- $V_{\text{CKM}} = \begin{pmatrix} 0.97383 \pm 0.00024 & 0.2272 \pm 0.0010 & (3.96 \pm 0.09) \times 10^{-3} \\ 0.2271 \pm 0.0010 & 0.97296 \pm 0.00024 & (4.221^{+0.010}_{-0.080}) \times 10^{-2} \\ (8.14^{+0.32}_{-0.64}) \times 10^{-3} & (4.161^{+0.012}_{-0.078}) \times 10^{-2} & 0.999100^{+0.000034}_{-0.000004} \end{pmatrix}$
- The CKM matrix a-la ATLAS/CMS:

$$V_{\rm CKM} = \begin{pmatrix} 1 & 0.2 & 0 \\ -0.2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

MFV predictions: Mixing

• The only source of mixing – the CKM matrix:

$$V_{\rm CKM}^{\rm LHC} = \begin{pmatrix} 1 & 0.2 & 0\\ -0.2 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

New (s)fermions will decay to either 3rd generation or non-3rd generation quarks but not to both

- ATLAS/CMS can exclude MFV by observing $Br(q_3) \sim Br(q_{1,2})$
- Examples of new particles: Vector-like quarks; squarks...

MFV + SUSY

- Squarks:
 - Spectrum: 2 + 1
 - Deays: $2 \rightarrow u, d, s, c, 1 \rightarrow t, b$
- Sleptons, $\Lambda_{\text{seesaw}} > \Lambda_{\text{mediation}}$:
 - spectrum: 3
 - Deays: flavor diagonal
- Sleptons, $\Lambda_{\text{seesaw}} < \Lambda_{\text{mediation}}$:
 - $-Y_N$, M_R may leave a footprint on the slepton spectrum and flavor decomposition

Flavor Physics and CP Violation

Avital Dery, Aielet Efrati, Yonit Hochberg, YN, arXiv:1302.3229

The flavor of \boldsymbol{h}

Present

Observable	Experiment	
$R_{\gamma\gamma}$	1.6 ± 0.3	
R_{ZZ^*}	1.0 ± 0.4	

•
$$R_f = \frac{\sigma_{\text{prod}} BR(h \to f)}{[\sigma_{\text{prod}} BR(h \to f)]^{SM}}$$

- Indication that $Y_t = \mathcal{O}(1)$
- The beginning of Higgs flavor physics

The flavor of \boldsymbol{h}

Future

- What can we learn from $R_{\tau\tau}$, $X_{\mu\mu}$, $X_{\tau\mu}$?
- Interplay of flavor with electroweak symmetry breaking

Higgs with MFV

- $\lambda_{ij}\bar{L}_i\phi E_j + \frac{\lambda'_{ij}}{\Lambda^2}(\phi^{\dagger}\phi)\bar{L}_i\phi E_j + \cdots$
- MFV: $\lambda' = a\lambda + b\lambda\lambda^{\dagger}\lambda + \cdots$

The flavor of h

Higgs with MFV

- $\lambda_{ij}\bar{L}_i\phi E_j + \frac{\lambda'_{ij}}{\Lambda^2}(\phi^{\dagger}\phi)\bar{L}_i\phi E_j + \cdots$
- MFV: $\lambda' = a\lambda + b\lambda\lambda^{\dagger}\lambda + \cdots$

•
$$Y_{\tau} = \left(1 + \frac{av^2}{\Lambda^2}\right) \frac{\sqrt{2}m_{\tau}}{v}$$

• $\frac{Y_{\mu}}{Y_{\tau}} = \left[1 - \frac{2b(m_{\tau}^2 - m_{\mu}^2)}{\Lambda^2}\right] \frac{m_{\mu}}{m_{\tau}}$

•
$$Y_{\mu\tau} = Y_{\tau\mu} = 0$$

Higgs with FN

- $\lambda_{ij}\bar{L}_i\phi E_j + \frac{\lambda'_{ij}}{\Lambda^2}(\phi^{\dagger}\phi)\bar{L}_i\phi E_j + \cdots$
- FN: $\lambda'_{ij} = \mathcal{O}(1) \times \lambda_{ij}$

Higgs with FN

- $\lambda_{ij}\bar{L}_i\phi E_j + \frac{\lambda'_{ij}}{\Lambda^2}(\phi^{\dagger}\phi)\bar{L}_i\phi E_j + \cdots$
- FN: $\lambda'_{ij} = \mathcal{O}(1) \times \lambda_{ij}$

•
$$Y_{\tau} = \left[1 + \mathcal{O}\left(\frac{v^2}{\Lambda^2}\right)\right] \frac{\sqrt{2}m_{\tau}}{v}$$

• $\frac{Y_{\mu}}{Y_{\tau}} = \left[1 + \mathcal{O}\left(\frac{v^2}{\Lambda^2}\right)\right] \frac{m_{\mu}}{m_{\tau}}$
• $Y_{\mu\tau} = \mathcal{O}\left(\frac{|U_{23}|vm_{\tau}}{\Lambda^2}\right), \quad Y_{\tau\mu} = \mathcal{O}\left(\frac{vm_{\tau}}{|U_{23}|\Lambda^2}\right)$

Intermediate summary V

Model	$R_{ au^+ au^-}$	$X_{\mu^+\mu^-}/(m_{\mu}^2/m_{\tau}^2)$	$X_{\tau\mu}$
\mathbf{SM}	1	1	0
MSSM	$(\sin lpha / \cos eta)^2$	1	0
MFV	$1+2av^2/\Lambda^2$	$1-4bm_{ au}^2/\Lambda^2$	0
\mathbf{FN}	$1 + \mathcal{O}(v^2/\Lambda^2)$	$1 + \mathcal{O}(v^2/\Lambda^2)$	$\mathcal{O}(v^4/\Lambda^4)$

Conclusions

ATLAS/CMS and flavor factories give complementary information

- In the absence of NP at ATLAS/CMS, flavor factories will be crucial to find $\Lambda_{\rm NP}$
- The NP flavor puzzle is likely to be understood
- Understanding the NP flavor puzzle \implies Probe physics at $\Lambda_{\rm NP} \gg \Lambda_{\rm LHC}$
- With NP that is affected by the mechanism that determines the Yukawa structure: The SM flavor puzzle may be solved
- Example: higher-dimension Higgs couplings