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Vacuum arcs represent challenging environments 

both computationally and experimentally 

• For us, the arc is a “good thing” 

• We use it to generate high density plasma 

• Our main challenge is to have a reliable, reproducible arc  

• Do the same thing over and over 

• Central questions include 

• What is present in the arc? 

• When is it generated? 

• Where is it generated from? 

• What are these species properties? 

• How does the output change with operation 

• Answers to these questions help us understand  

• Phenomena of arc generation and maintenance  

• Plasma transport from the source 

Our progression has been from “far” to the “near” 



Introduction to the types of arcs we are considering 

• Experiments need to be flexible and versatile 

– Test predictive capabilities of code 

– Target desired physics 

– Overcome intrinsic headaches associated with arcs 

• Co-planar two electrode metal arcs embedded in ceramic sleeves 

– Various configurations and compositions 

– Mostly vacuum, but not always 



A wide range of diagnostic techniques are 

needed to study arc physics 

• A wide range of techniques can be utilized to probe aspects of plasma 

generated in an arc 

– Our challenge is to match the right tool to the right job 

• Tools can consist of 

– "Global" current and voltage 

– Semi-localized optical emission and ion beam spectroscopies 

– Localized laser induced fluorescence, absorption  and or scattering 

Emphasis is placed on laser based diagnostics 
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Laser based diagnostics facilitate measurements 

of the arc environment 
• Laser diagnostics offer good spatial and temporal resolution 

• Region of interrogation limited to where the beam is 

• Temporal resolution governed atomic response 

• “Minor” perturbations to the plasma 

• Some redistribution of excited states, possibly some ionization 

• Diagnostics based on laser-induced fluorescence (LIF) 

• Laser collision induced fluorescence (LCIF) for electron densities 

• LIF-Dip for electric fields 
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LCIF is based on redistribution of excited 

state by plasma electrons 

 Laser excitation populates an intermediate state 

 Relaxation processes deplete the excited state 

 Portion of excited state population gets redistributed into "uphill" states 

 Driven by interaction with energetic plasma species (electrons) 

 

 

 

 

LCIF looks for changes in emission of neighboring 

“uphill” states after laser excitation 
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Redistribution after laser excitation is complex 

 A "good" model is required to predict transfer between levels  

 Employ a collisional-radiative model (CRM) to predict redistribution 
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"Electron mixing" "Photon mixing" "Neutral mixing" 

Approach is applicable to various atomic and molecular 

systems of interest 

Electron-temperature dependent rates 
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Helium atom serves as target species 

for LCIF measurements 

 Employ Helium to start with - considering argon 

 "Simple system" with "better known" rates 

 Utilize functionalized form of cross-sections compiled by Ralchenko1 

 Integrate to get rates, compare to measured rates 2,3 
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2: R. Denkelmann, S.Maurmann, T. Lokajczyk, P. Drepper, and H. –J. Kunze, J. Phys. B: At. Mol. Opt. Phys. 32,  4635 (1999).  

    R. Denkelmann, S. Freund and S. Maurmann, Contrib. Plasma Phys. 40, 91 (2000). 

3: B. Dubreuil and P. Prigent, J. Phys. B: At. Mol. Opt. Phys. 18,  4597 (1985). 

 

Computed and measured excitation rates in Helium 

Accuracy of ne, Te  depend on knowledge of Kij(kTe) 
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CRM predicts evolution of various helium 

states after laser excitation 
 Temporal evolution serves as a partial "fingerprint" of electron interaction 

 Analyze shape of decay above ne~ 1011 electrons/cm3 

 Below ne~ 1011 absolute intensities are needed 

 

 

Need at least two time-resolved profiles to uniquely obtain ne, kTe  
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Trends can be extracted to bypass the need 

for resolving LCIF evolution 
 Examine ratios of time integrated LCIF 

 Eliminates need for absolute calibrations 

 Still need relative efficiencies of imaging system 

 Capitalize on "kTe independent" coupling of 33P to 33D 

 Ratio of 588 nm to 389 nm yields ne 

 Density + Ratio of 447nm to 588 nm yields kTe 
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Experimental implementation of the LCIF 

technique is realized 
• Desirable to develop technique over broad range of densities (and temperatures) 

– Expanding arc in helium aftergolw 

– Arc moves on translatable stage 

– Double probe to measure ion/electron densities 
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LCIF works quite well over broad density range 

• Technique can measure densities from <108 to >1012 e/cm3 

– Demonstrates good spatial resolution (< 1 mm) 
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LCIF captures transient phenomenon 

 Examine generation of arc 

 Low pressure (30 mTorr) helium after glow 

 Time steps of 100 ns, 50 ns gates 
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Spatial-temporal maps of arc expansion are illustrated with LCIF  



Monitoring higher levels gives measure of 

"electron temperature" 
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“Temperature” measurements have been 

illustrated in other plasma systems 

 
 Electron temperature concept has been employed in other plasma systems 

 ECR generated plasma cathode experiments 

 NASA driven research interested in electron sources for ion propulsion 

neutralization 
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• Electrons and ions "perturb" atomic orbitals 

– Degree of interaction ~ ne and Te 

• Measured profiles are convolution 

– Stark, Van der Waals, Doppler and Instrument  

• Fit profiles to obtain ne, 
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Stark broadening is used to target higher densities 
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Both passive and active interrogation are being 

considered 

Comparison of the two techniques 

• Nanosecond pulsed laser excitation is more difficult, but…… 

– Overcomes "line of sight" convolution 

– Better spectral resolution (~ pm) than spectrometers (~10 pm) 

– Can provide 2d spatial maps 
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LIF-dip technique detects Stark-shifted states 

of probed atoms  
• Fluorescence dip spectroscopy is a two laser technique 

• Probe Stark-shifted Rydberg states 

• Transition to the Rydberg level is monitored by a “dip” in the fluorescence 
from the intermediate state 

Stark Shifted
Rydberg Level

PMT Signal

Intermediate Level

PMT Signal

t ~ 20 ns

t~300 ns

(nm)

0=1071.5

-0.10 0.00 0.10 0.20 0.30

In
te

n
s
it
y
 (

A
rb

.)

0

1

2

3

4

5

0 V/cm

590 V/cm

1175 V/cm

1765 V/cm

Stark Spectra

Electric field sensitivity is determined by Rydberg level probed 

13d[1/2]] 



Typical 2D LCIF-dip experimental arrangement 

 Firing of lasers synched to rf phase. 

 13 MHz rf, 20 Hz lasers 

 Time resolved rf voltages 

 Gate ICCD after firing of the lasers 

 2D snapshot of LIF 

 Accumulate for ~ 100's of laser 

shots 

 Repeat as probe laser is 

incrementally stepped 

 Typically 30 discrete steps 

 

 Post process to determine electric 

fields 

 Plot LIF vs. wavelength for each 

pixel 

 Assign electric field, create 2D 

map 
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LIF-Dip technique has been used to study 

boundaries in rf plasma systems 

This technique is not utilized in arc studies….. 
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LIF-Dip spectroscopy has been utilized to 

measure plasma formation between gap  

Physics Today, 60(5) May 2007, page 19 

Plasma formation 

Plasma 

established 

• Eindhoven studies captured the cover of Physics Today (May, 2007) 

• Gerrit Krosen, Erik Wagenaars and Mark Bowden 

• Utilized two-photon absorption from Xe ground state 

• Pre-plasma formation 

Could this idea be applied to a (vacuum) arc breakdown? 



For fast phenomenon, time-resolved (field) 

measurements becomes challenging 

Test technique: 13.56 MHz 

 (at least) Two key challenges need to be overcome 

 Stuff to excite from and resolution of fast phenomena 

 Similar to earlier studies on high frequency (>100 MHz) rf plasmas   

 Free run rf, no phase reference 

 Measure total broadened LIF-dip profile 
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There may be ways to side-step limitations to extract 

useful information 



Above the sheath
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LIF-dip profiles 

Plasma induced emission 
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 Apply technique to plasma generated at higher frequencies 

 Measure across wafer, determine peak fields 

 Integrate fields, calculate sheath voltage 

May be able to determine bounds on transient phenomena 

using approaches like this 

 

Peak sheath voltages 

Proof of principle demonstrated in high 

frequency plasma reactor 



• The arc represents a challenging environment to both experimentalist as well as 
modelers 

– Spatial scales, temporal scales and  gradients all add to these challenges 

– Randomness, stochastic nature of these devices add additional challenge 

 

• “Plasmas or arcs are like children, no two are alike” 

– Clearly application governs ones concerns 

– It is important to look for similarities to gain understanding 

 

• “New” approaches and clever uses of “older” approaches need to be employed to 
gain access to these phenomena 

– Keep looking for that clever idea that might be useful for addressing some of 
these questions 

 

 

Concluding thoughts and future directions 


