| Introduction<br>000 | <b>Code</b><br>00000 | Physics models | Conclusions |
|---------------------|----------------------|----------------|-------------|
|                     |                      |                |             |

# ArcPIC 2D: Simulating arc ignition

Kyrre Sjobak<sup>1</sup>, Lotta Mether<sup>2</sup>, Helga Timkó, Walter Wuench

University of Oslo / University of Helsinki / CERN

MeVARC 2012, Albuerquerque, 1.-4. October

<sup>1</sup>k.n.sjobak (a-with-pigtail) fys.uio.no
<sup>2</sup>lotta.mether (a-with-pigtail) helsinki.fi



Kyrre Sjobak, Lotta Mether

 Introduction
 Code
 Physics models
 Conclusions

 Oot
 Outline
 Outline
 Outline
 Outline
 Outline

#### 1 Introduction

- Motivation
- ArcPic 2D

# 2 Code

- Code improvements
- Modular physics system
- Outlook & summary

### 3 Physics models

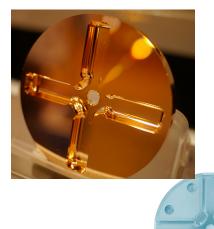
# 4 Conclusions



Kyrre Sjobak, Lotta Mether

| Introduction |  |
|--------------|--|
| 000          |  |

Code


Physics models

Conclusions

# Motivation

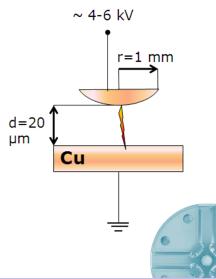
### Motivation

- CLIC: High gradient  $(E_{\rm acc} \approx 100 {\rm MV/m})$ , normal conducting  ${\rm e^+e^-}$  collider
- Arcs limit gradient of normal conducting RF accelerators
- Predict performance of accelerating structure geometry during RF design
- Understanding initiation of vacuum arcs
- Better description of involved physics needed



Kyrre Sjobak, Lotta Mether

Code 00000 Physics models


Conclusions

# DC spark experiment

The DC spark experiment at CERN measures:

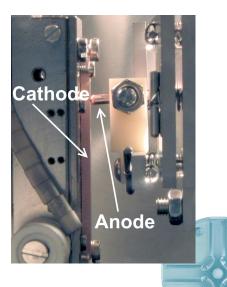
- Voltage and current flow through the breakdown
- High repetition rate capability (separate geometry)

In-depth presentation by Nick Shipman tomorrow



Code

Physics models


Conclusions

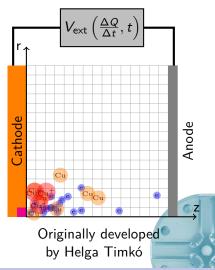
# DC spark experiment

The DC spark experiment at CERN measures:

- Voltage and current flow through the breakdown
- High repetition rate capability (separate geometry)

In-depth presentation by Nick Shipman tomorrow




#### Code

Physics models

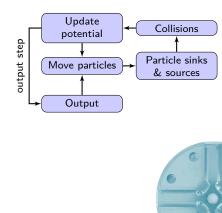
Conclusions

# ArcPIC 2D in a nutshell

- 2d3v electrostatic particle-in-cell (PIC) code
  - cylindrical symmetry
  - uniform finite difference grid
- Geometry: Planar electrodes
- Particles: e<sup>-</sup>, Cu<sup>+</sup>, Cu
- Goal: Testing physics models for breakdown early stages
- Physics (modular part):
  - External circuit
  - Particle injection
  - Collisions (el./inel.)
  - Electrostatic interaction
  - External magnetic field
- Language: C++, partly OO



Introduction ○○●


Code

Physics models

Conclusions

# ArcPIC 2D in a nutshell

- 2d3v electrostatic particle-in-cell (PIC) code
  - cylindrical symmetry
  - uniform finite difference grid
- Geometry: Planar electrodes
- Particles: e<sup>-</sup>, Cu<sup>+</sup>, Cu
- Goal: Testing physics models for breakdown early stages
- Physics (modular part):
  - External circuit
  - Particle injection
  - Collisions (el./inel.)
  - Electrostatic interaction
  - External magnetic field
- Language: C++, partly OO



| Introd | u | С | t | i | 0 | r |
|--------|---|---|---|---|---|---|
| 000    |   |   |   |   |   |   |

# Code development



Kyrre Sjobak, Lotta Mether

Code • o o o o o Physics models

Conclusions

# Recent code improvements

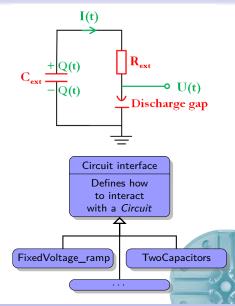
- More modern techniques (OO, STL) introduced
- Many "infrastructure" pieces rewritten
- Hot parts found using profiling
- Gains in modularity, maintainability, and performance
  - $\blacksquare$  Memory footprint reduction:  $\approx \! 90~\text{GB} \rightarrow \approx \! 2~\text{GB}$
  - Modular/OO circuit and particle injection





Kyrre Sjobak, Lotta Mether

Code


Physics models

Conclusions

# Modular circuit models

Goals:

- Mirror experimental setup(s)
- Play with different ways of supplying external field
- Object-oriented system, classes representing different circuits
  - Charge stored on capacitor
  - Fixed voltage w/ linear turn-on
- Adding new models simple
- A model *may* provide extra instrumentation



Kyrre Sjobak, Lotta Mether

Code ○O●○○ Physics models

Conclusions

# Particle boundaries

# Goals

- Test multiple physics models
- Reproduce experiment
- Transfer models to RF
- Object-oriented system
  - Classes representing models
  - Inheritance enables partial re-use of models
  - Adding more models simple
- Each model responsible for injecting and removing particles on domain boundaries





#### Code

Physics models

Conclusions

# Near-future outlook (code)

#### Handling of many particles

#### Want:

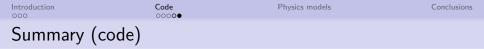
- Good MC resolution in BD initial stages
- Possibility to run far into breakdown

# Methods:

- Parallelization (OpenMP)
- Dynamic particle weighting, merging

# Field resolution

#### Want:


 Properly resolve the boundary layer

# Methods

Non-uniform grid

#### Non-symmetric breakdowns

Want: Spontaneous breaking of circular symmetry of emission spot Method: Cylindrical 3D field solver & pusher



- We have a fairly robust PIC code
- Modular particle boundary conditions and circuit model
- Modeling DC spark experiment @ CERN

#### Goal

Find a combination of physics models describing arc ignition



Kyrre Sjobak, Lotta Mether

# Physics models



Kyrre Sjobak, Lotta Mether

| Introd | uction |
|--------|--------|
| 000    |        |

**Code** 00000

# Conclusions



Kyrre Sjobak, Lotta Mether