2D Arc-PIC Simulating arc ignition

THE PHYSICS

2D Arc-PIC Simulating arc ignition

THE PHYSICS

Input
Output
Discussion

Modelling the ignition of a vacuum arc

- Due to limited simulation range we cannot cover entire dynamic range of vacuum arc
 - Focus on the early stage of plasma ignition from a single field emitter ("tip") with enhanced electric field
- Tip not simulated explicitly
 - Modelled as area with large field enhancement factor β_0
- Aim to link different stages of vacuum arcs
- Capture transition from nano-scale to macroscopic properties

Emission model

Electrons

SEY from Cu impact *(constant)*

Injection from "flat" surface with β_f

Injection over R_{em} (calculated from J_{FN} through R_{tip} with θ_o)

Monte Carlo collisions

- Coulomb collisions
 - (e⁻, e⁻), (Cu⁺, Cu⁺), (e⁻, Cu⁺)
- Elastic collisions
 - (e⁻, Cu), (Cu, Cu)
- Charge exchange and momentum transfer
 - (Cu, Cu⁺)
- Impact ionization
 - $e^{-} + Cu --> 2e^{-} + Cu^{+}$
- No recombination

From field emission to plasma

$$eta_0 = 35$$
, $eta_f = 2$
 $E_{ext} = 290 \text{ MV/m}$
 $R_{tip} = 0.1 \text{ } \mu\text{m}$
 $R_{em} = 0.4 \text{ } \mu\text{m}$
 $r_{Cu/e} = 0.015$
SEY = 0.5

Grid 240 × 400 dZ = 50 nm $N_{sp} = 5.34$ dt = 1.78 fs $dt_{ion} = 5dt$ $dt_{coll} = 5dt$

Number densities & potential

- Critical neutral density 10¹⁸ cm⁻³
 - Runaway ionization
 - Breakdown!
- Formation of sheath + quasi-neutral plasma
- Sheath + plasma can be seen in potential
- No proper burning voltage

Current-voltage characteristics

- Current reaches maximum value ≈ 0.4 A
- Voltage decreases as capacitor is drained
- Plasma self-maintaining as long as energy is available

$$Q(t_{i+1}) = Q(t_i) - I(t_i)\Delta t$$

 $U(t_{i+1}) = Q(t_{i+1}) / C_{ext} - R_{ext}I(t_i)$

Here
$$R_{ext} = 0$$

Current-voltage characteristics

- Current reaches maximum value ≈ 0.4 A
- Voltage decreases as capacitor is drained
- Plasma self-maintaining as long as energy is available

$$Q(t_{i+1}) = Q(t_i) - I(t_i)\Delta t$$

 $U(t_{i+1}) = Q(t_{i+1}) / C_{ext} - R_{ext}I(t_i)$

Here
$$R_{ext} = 0$$

Why is the plasma current so low?

- Experimentally measured currents ≈ 10 -100 A
- Because of the field emission model
 - FN emission set to cut-off at 12 GV/m (≈ end of validity range)
- Need to improve emission model
- How?
 - Thermionic effects?
 - How define T?
 - Shape of tip?

What else may be wrong?

- Neutral evaporation model
 - Current scheme compromise between simulation constraints
 - Much smaller value gives too long run times
 - Much larger too steep density gradients
- Field emitter and injection radii
 - Choice based loosely on experimental data
 - Makes a big difference quantitatively
- Charge states
 - Currently only first Cu charge state implemented
 - Average charge state ≥ 2
 - Optical spectroscopy at CERN

Conclusion & Outlook

- We model the development from a single field emitter to a stable vacuum arc
- Want to go from qualitative to quantitative description, model steady state...
 - Improve emission & circuit models
 - requires more knowledge/assumptions on tip properties?
 - Understand which effects are fundamental properties of the arc, what follows from our specific assumptions and/or limitations of the simulation method
- Use the code as a test lab
- Long term goals