

Atomistic simulations of field evaporation in atom probe tomography

S. Parviainen, F. Djurabekova, K. Nordlund

What is APT?

- Method to determine the structure and chemical composition of a sample in 3D
- Very high resolution (~nm)
 - Atomic resolution is the ultimate goal
- Destructive method

Why should you care?

- Our work is an offshoot from breakdown related research
 - Branching out is good!
 - Increased cooperation between communities
- Somewhat relevant for RF case (not so much DC)
 - What happens at the anode
- Field evaporation may increase field needed for breakdown to occur

To break down or not?

How it works

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

(Kelly et al. 2007)

How it works

FIG. 1. Experimental setup of a modern atom probe.

(Gault 2009)

How it works

HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI

(Robert R. McCormick School of Engineering and Applied Science)

A closer look at the "standard reconstruction model"

Assumptions:

FIG. 1. Experimental setup of a modern atom probe.

Problem: Precipitates

Dark-field TEM

Atom Probe Tomography

Core/shell precipitates in Al-Li-Sc-Zr alloy

(Marquis)

UNIVERSITY OF HELSINKI

"Worst case scenario"

- Simulate the processes in APT to check the assumptions
- In the simulations we know the exact original sample shape and composition
 - These can be compared with what the reconstruction algorithms tell us it should look like
- Simulations performed using Molecular Dynamics to capture the dynamic evolution of the simulated sample
 - Previously other groups have used much simpler methods

Molecular Dynamics

- Calculate forces acting on atoms, solve equations of motion
- Traditionally only inter-atomic interactions are included in MD
 - We also consider the forces due to the external electric field
 - Surface charge calculated using Gauss' law
 - (code also supports field emission heating but not used in APT simulations)
- Shape of the field depends locally on the sample geometry
 - Determined by solving Laplace's equation using

HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI

Simulating evaporation

 In principle the hybrid ED&MD code is all that is needed to simulate field assisted evaporation

but...

At low temperatures the evaporation probability decreases markedly

Simulating evaporation efficiently

- Use a Monte Carlo step to pick atoms for evaporation
 - Probability
 - Evaporation Barrie Program (Φ) (Print b, Φ, U)
 - Assume singly ionized state
 - Actually depends on the material
 - No multiples (one evaporation at a time)
 - Could be added later

Reconstruction - original

HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI

Reconstruction - trajectories

Reconstruction – detector hits

Reconstruction – end result

FIG. 1. Experimental setup of a modern atom probe.

Reconstruction - comparison

Effect of surface features

Some results

Pure copper surface: deviation

HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI

Pure copper: evaporation order

UNIVERSITY OF HELSINKI

Inclusion: deviation

Inclusion: evaporation order

Inclusion: electric field distortion

Back to breakdowns

Application for breakdown prevention?

Possible surface treatment

- Tested at CERN DC setup
 - Very preliminary results
 - More tests to be performed later

Conclusions

- We have developed a new model to simulate field evaporation at low temperatures
- Reconstructing simulated specimen gives a reasonably good result
- Results show that changes in surface morphology affect ion trajectories
 - Deviations in trajectories
 - "Incorrect" evaporation order
- Field evaporating a surface may reduce breakdown probability

- The method will be published soon
- Comparison of simulations with experiments
 - Collaboration with APT group at ETH Zürich
 - Need to make the results "compatible"

53rd International

JES2012 MAY21-25

Field Emission Symposium

What happened at IFES 2012?

- Not much about field emission
 - Renamed to APT&M for 2014 (Münster)
- Field emission and evaporation theory needed
 - But not many are working on it
 - Richard Forbes "promised" much improved FN equation soon
- Some groups working on effects of high electric fields on surfaces
 - But for APT, so no breakdowns
 - Changes in surface morphology
 - Calculation of surface charge