The new IGISOL 4 radioactive ion beam facility: beginning a new era of measurements

MANCH

Outline

Nuclear structure from optical spectra

Collinear spectroscopy at JYFL

- The IGISOL 4 upgrade
 - Current proposals
 - Status so far

Optical spectra

SM comparisons: level occupancy, migration...

$$\langle r^2 \rangle = \langle r^2 \rangle_{\rm sph} \left(1 + \frac{5}{4\pi} (\langle \beta_2^2 \rangle + \ldots) + 3\sigma^2 \right)$$

... with cooled, bunched beams

Gas filled RFQ

Photon background dominated by continuous laser scatter

Gas volume

MANCHESTER 1824

Why use the IGISOL?

Cyclotron beam

- Fast (sub-ms)
- Universal

LASTIC

Thin foil targets

lon guides

Fusion

Stable beams

... HIGISOL, ...Laser Ion Source

And now: IGISOL 4

MANCHESTER 1824

Alternative stable beam access

Intense IGISOL use forseen Retain access to stable beams during cooling

MANCHES

... and plans underway for a ²⁵²Cf source (few mCi)

Current plans

- Previously, ~continuous offline access
 - Scheme development, preparation
 - Technique development

MANCH

- IGISOL now has a dedicated cyclotron
 - Maximise use of time with fast target changes and a separate offline source during cooling
 - 32 days of beam time awarded already for:-
 - Mo
 Y
 Ta

Mapping of the N=60 region

MANCHESTER 1824

1) Spectroscopy of Mo

Use optical pumping and 1/2->3/2 to get $Q_{\text{s},}$ and N>66

MANCHESTER

Conflicting predictions (N>66)

- GMM predict oblate shapes A=106-118 Moller & Nix ADNDT 59 '95 185
- RMF: prolate until A=113 Lalazissis & Raman ADNDT 71 '99 1
- PES: Oblate/Prolate shape coexistence Skalski et al. NPA 617 '97 282

MANCHESTER

• SCMF: triaxiality Rodriguez-Guzman PLB 691 '10 202

2) Yttrium

MANCHESTER 1824

Versi

Optical pumping of Y,Nb

HR collinear spectroscopy

Spin determination

Does not require bunching (clean beams permitting)

- Smaller mscr for MQP isomer desp. $Q_s (\rightarrow <\beta_2 >)^{\uparrow}$
- Deformation or diffuseness → pairing
- Decrease is proportional to MQP number
- Nuclear O-E staggering has same origin? 1-QP?

Optical pumping of Ta

MANCHESTER

- OP to efficiently double # studied MQP isomers
- Remeasure selected GS transitions for mag. distbn.

- Indirect evidence of ^{229m}Th
- •~4eV

MANCHESTER

- Possibility of NEET
- "Nuclear clocks"
 - Test fundamental const. (transition freq vs time)
 - Test General Relativity (f indep. grav. potential)

PRL. 97 092502 (2006) PRL. 98 070802 (2007) PRL 104 200802 (2010) PRL 104 213002 (2010) PRL 105 182501 (2010)

Discovery of new states

A recent example ⁸⁰Ga:

- Could be too long loved for some decay methods g
- Half-life similar to gs
- Too low-lying
 - same mass

Optical spectroscopy is complements these methods

Cone trap June June

IGISOL 4 work to date

Summer 2011

January 2012

(from switchyard)

The Univ of Manch

CW(1) Laser cabin

Pulsed laser cabins Pulsed TiSa

MANCHESTER 1824 MANCHESTER

Present status

- Laser line in place
- Under vacuum
- Ions from IGISOL
- Online Feb 2012
- Beamtime for Y,Mo,Ta,Th,(W)...

Future plans... neutron converter

- $200\mu A$ extracted from cyclotron (target cooling?)
- Use of Be converter for n-induced cold fission

MANCHESTER

The Universit of Mancheste

Future plans... cryogenic guides

- Use a 30K cryo-cooler
 - Ultra-pure helium
 - Ideal for ion survival
 - No formation of molecules/adducts
 - Less neutralisation / charge state spread

Summary

- Laser spectroscopy provides model independent measurements and a comprehensive picture of ground state and isomeric structure
- The JYFL facility has provided unique access to cases - both short-lived and refractory
- The new laboratory will provide additional opportunities and unparalleled access to beam time for further technique development and exploitation (esp. fission - eg. Ni).

Collaboration

University of Manchester, UK

J. Billowes, P. Campbell, B. Cheal, A. Dicker, D. Johnson, M. Reponen

University of Jyväskylä, Finland

D. Gorelov, A. Jokinen, V. Kolhinen, I.D. Moore, H. Penitllä, I. Pohjalainen, Sami Rinta-Antila

University of Birmingham, UK

D.H. Forest, G. Tungate