THE CKM QUARK MIXING MATRIX A. Ceccucci (CERN), Z. Ligeti (LBL), Y. Sakai (KEK) Written for the RPP 2006 Regularly updated every two years #### Structure: - 1. Introduction - 2. Magnitudes of CKM elements - 3. Phases of CKM elements - 4. Global fit in the Standard Model (SM) - 5. Implications beyond the SM #### Where are we now - During the past ten years we have witnessed the success of the CKM picture - All CP-violation manifestations in lab experiments are amenable to one single complex phase in flavour changing transitions of quarks - Now Look to deviations from overall consistency of SM - Updates mainly from new LHC results, Tevatron and B-factories full samples ### Updates since the 2010 edition - Magnitude of CKM elements - V_{cs} - New measurements of D_s leptonic decays (muons and taus) & f_{Ds} from lattice - $|V_{cs}| = 1.008 + -0.024$ - Combined with semi-leptonic: - $|V_{cs}| = 1.006 + -0.023$ - V_{cb} (follow mini-review) - Since the RPP 2008 version, the tension between exclusive and inclusive determinations lead to scaled errors about twice as large as previously quoted - Only incremental improvements since RPP 2010 - $|V_{cb}| = (40.9 + 1.1) \times 10^{-3}$ - V_{ub} (follow mini-review) - Persistent tension between exclusive and inclusive determinations - Average $|V_{ub}| = (4.15 + -0.49) \times 10^{-3}$ - A determination (not included in the average) is obtained from B($B\rightarrow \tau \nu$)=(1.67 +/- 0.30) × 10⁻⁴ and f_B = 190.6 +/- 4.6 MeV |V_{ub}| = (5.10 +/- 0.47) × 10⁻³ ### Updates since the 2010 edition - V_{td} & V_{ts} not likely to be precisely determined in tree level processes, rely on neutral meson mixing and K and B rare decays - New result from LHCB has reduced the error on Δm_s by about $\times 3$ - Errors on V_{td} and V_{ts} dominated by lattice QCD inputs - Several uncertainties are reduced calculating the ratio $\xi = (f_{Bs} \ \sqrt{B_{Bs}}) \ / \ (f_{Bd} \ \sqrt{B_{Bd}}) = 1.237 \ +/- 0.032$ (unquenched) $$|V_{td} / V_{ts}| = 0.211 + -0.001 + 0.006$$ - V_{tb}: new single top result from CMS - Average with D0 and CDF : $|V_{tb}| = 0.89 + -0.07$ # Updates on Phases of CKM elements β / φ₁ New Belle result (full sampe), average of charmonium modes (Babar+Belle): $$\sin 2 \beta = 0.679 + -0.020$$ - α / ϕ_2 LHCb first result on $B \rightarrow \pi^+ \pi^-$ $$\gamma = (68 + ^{10}_{-11})^{\circ}$$ #### Global Fit to Standard Model Using frequentistic prescription (CKMfitter): • $$\lambda = 0.22535 + -0.00065$$ • $$\rho = 0.131^{+0.026}_{-0.013}$$ $$A = 0.811^{+0.022}_{-0.012}$$ $$\eta = 0.345^{+0.013}_{-0.014}$$ Using Bayesian prescription (UTfit): • $$\lambda = 0.22535 + -0.00065$$ A= 0.817+-0.015 $$A = 0.817 + /-0.015$$ • $$\rho = 0.131 + /-0.018$$ $$\eta = 0.348 + /-0.014$$ #### **RPP 2010** #### **RPP 2012** # Implications Beyond Standard Model - Many key measurements sensitive to BSM are not useful to in terms of constraining the unitarity triangle - For instance, from CP-asymmetries in semileptonic B⁰_{d,s} decays, D0 finds a 3.9σ deviation from SM - A key quantity in the B_s system is β_s = arg (- V_{ts} V_{tb} */ V_{cs} V_{cb} *) which is the small λ^2 -suppressed angle of a squashed unitarity triangle (scalar product of second and third column) - SM prediction: $\beta_s = 0.018 + -0.001$ - LHCb measurement (1 fb⁻¹): $\beta_s = 0.001 + -0.044$ - Uncertainty is still twice the SM prediction and ~40 times its uncertainties - Rare kaon decays clean tests of the standard model will be expected from the study of the $K \to \pi \ v \ v$ bar modes #### A few comments - Several constraints/elements depend significantly on input from theory (decay constants, bag parameters, form factors...) - Epsilon - Δ m d - Δ m $_{s}$ - 2+1 Flavor Lattice QCD averages - Average and error treatment of theory input not always straightforward - \bullet $f_+(0), f_{K,D,B}$ - B, quark masses,... - Persistent tension on the determination of V_{ub} - B→ τ ν ??