THE CKM QUARK MIXING MATRIX

A. Ceccucci (CERN), Z. Ligeti (LBL), Y. Sakai (KEK)

Written for the RPP 2006
Regularly updated every two years

Structure:

- 1. Introduction
- 2. Magnitudes of CKM elements
- 3. Phases of CKM elements
- 4. Global fit in the Standard Model (SM)
- 5. Implications beyond the SM

Where are we now

- During the past ten years we have witnessed the success of the CKM picture
- All CP-violation manifestations in lab experiments are amenable to one single complex phase in flavour changing transitions of quarks
- Now Look to deviations from overall consistency of SM
- Updates mainly from new LHC results,
 Tevatron and B-factories full samples

Updates since the 2010 edition

- Magnitude of CKM elements
 - V_{cs}
 - New measurements of D_s leptonic decays (muons and taus) & f_{Ds} from lattice
 - $|V_{cs}| = 1.008 + -0.024$
 - Combined with semi-leptonic:
 - $|V_{cs}| = 1.006 + -0.023$
 - V_{cb} (follow mini-review)
 - Since the RPP 2008 version, the tension between exclusive and inclusive determinations lead to scaled errors about twice as large as previously quoted
 - Only incremental improvements since RPP 2010
 - $|V_{cb}| = (40.9 + 1.1) \times 10^{-3}$
 - V_{ub} (follow mini-review)
 - Persistent tension between exclusive and inclusive determinations
 - Average $|V_{ub}| = (4.15 + -0.49) \times 10^{-3}$
 - A determination (not included in the average) is obtained from B($B\rightarrow \tau \nu$)=(1.67 +/- 0.30) × 10⁻⁴ and f_B = 190.6 +/- 4.6 MeV |V_{ub}| = (5.10 +/- 0.47) × 10⁻³

Updates since the 2010 edition

- V_{td} & V_{ts} not likely to be precisely determined in tree level processes, rely on neutral meson mixing and K and B rare decays
 - New result from LHCB has reduced the error on Δm_s by about $\times 3$
 - Errors on V_{td} and V_{ts} dominated by lattice QCD inputs
 - Several uncertainties are reduced calculating the ratio $\xi = (f_{Bs} \ \sqrt{B_{Bs}}) \ / \ (f_{Bd} \ \sqrt{B_{Bd}}) = 1.237 \ +/- 0.032$ (unquenched)

$$|V_{td} / V_{ts}| = 0.211 + -0.001 + 0.006$$

- V_{tb}: new single top result from CMS
 - Average with D0 and CDF : $|V_{tb}| = 0.89 + -0.07$

Updates on Phases of CKM elements

 β / φ₁ New Belle result (full sampe), average of charmonium modes (Babar+Belle):

$$\sin 2 \beta = 0.679 + -0.020$$

- α / ϕ_2 LHCb first result on $B \rightarrow \pi^+ \pi^-$

$$\gamma = (68 + ^{10}_{-11})^{\circ}$$

Global Fit to Standard Model

Using frequentistic prescription (CKMfitter):

•
$$\lambda = 0.22535 + -0.00065$$

•
$$\rho = 0.131^{+0.026}_{-0.013}$$

$$A = 0.811^{+0.022}_{-0.012}$$

$$\eta = 0.345^{+0.013}_{-0.014}$$

Using Bayesian prescription (UTfit):

•
$$\lambda = 0.22535 + -0.00065$$
 A= 0.817+-0.015

$$A = 0.817 + /-0.015$$

•
$$\rho = 0.131 + /-0.018$$

$$\eta = 0.348 + /-0.014$$

RPP 2010

RPP 2012

Implications Beyond Standard Model

- Many key measurements sensitive to BSM are not useful to in terms of constraining the unitarity triangle
 - For instance, from CP-asymmetries in semileptonic B⁰_{d,s} decays, D0 finds a 3.9σ deviation from SM
- A key quantity in the B_s system is β_s = arg (- V_{ts} V_{tb} */ V_{cs} V_{cb} *) which is the small λ^2 -suppressed angle of a squashed unitarity triangle (scalar product of second and third column)
- SM prediction: $\beta_s = 0.018 + -0.001$
- LHCb measurement (1 fb⁻¹): $\beta_s = 0.001 + -0.044$
- Uncertainty is still twice the SM prediction and ~40 times its uncertainties
- Rare kaon decays clean tests of the standard model will be expected from the study of the $K \to \pi \ v \ v$ bar modes

A few comments

- Several constraints/elements depend significantly on input from theory (decay constants, bag parameters, form factors...)
 - Epsilon
 - Δ m d
 - Δ m $_{s}$
 - 2+1 Flavor Lattice QCD averages
- Average and error treatment of theory input not always straightforward
 - \bullet $f_+(0), f_{K,D,B}$
 - B, quark masses,...
- Persistent tension on the determination of V_{ub}
 - B→ τ ν ??