CNAO ACCELERATORS AND BEAMS

Marco Pullia

Cells multiply

Normally cells multiply only when they are told so If there is a mutation (DNA error)... ...the cell is told to suicide (apoptosis)

Tumour

La cellula tumorale ha un DNA mutato

Le radiazioni sono in grado interagire col DNA e bloccare la crescita incontrollata

La progenie della cellula d'origine porta la stessa mutazione

Tumours

- □ They grow in an uncontrolled way
- They infiltrate the surrounding tissues and can originate metastasis (malignant)
- When metastatic, only chemotherapy is possible
- □ If localised, surgery or radiotherapy

Energy and Efficacy

Administered dose 1 Gy = 1 J / 1Kg

How many cells do I kill?

Potential energy (1 m fall = 10 Gy)

Heat (fever $38^\circ = 4185$ Gy)

lonizing radiation (little energy, many damages)

Radiation damage

Ionization breaks chemical bonds
Free radicals creation (mainly hydroxyl radical, OH⁻, and superoxide, O₂⁻. Poison for the cell!)
The target is DNA, ionization distribution is relevant

Comparison of the depth dose profiles

Longitudinal - Spread Out Bragg Peak

Macroscopic advantage of hadrons

Microscopic advantage of C ions

Transverse - Beam delivery

Scanning beam

Dose conformation active vs passive

Pencil beam

Passive system "horns" in healthy tissue

Scanned beam

The CNAO accelerator and lines

Synchrotron with slow extraction

Range 3-27 g/cm²

Slow extraction

Betatron core

Design Parameters I

Protons (10 ¹⁰ /spill)						
	LEBT (*)	MEBT	SYNC	HEBT		
Energy [MeV/u]	0.008	7	7-250	60-250		
Imax [A]	1.3×10 ⁻³ (0.65, 0.45)	0.7×10 ⁻³	5×10-3	7×10 ⁻⁹		
Imin [A]	1.3×10 ⁻³ (0.65, 0.45)	70×10 ⁻⁶	0.12×10 ⁻³	17×10 ⁻¹²		
$\varepsilon_{\rm rms,geo}$ [π mm mrad]	45	1.9	0.67-4.2	0.67-1.43(V)		
$\varepsilon_{90,geo}$ [π mm mrad]	180	9.4	3.34-21.2	3.34-7.14 (V) 5.0 (H)		
Magnetic rigidity [T m]	0.013 (0.026)	0.38	0.38-2.43	0.38-2.43		
$(\Delta p/p)_{tot}$	±1.0‰	±(1.2-2.2)‰	±(1.2-3.4)‰	±(0.4-0.6)‰		

* (H_2^+, H_3^+)

Design Parameters II

Carbon (4·10 ⁸ C/spill)						
	LEBT (C^{4+})	MEBT	SYNC	HEBT		
Energy [MeV/u]	0.008	7	7-400	120-400		
Imax [A]	0.15×10 ⁻³	0.15×10 ⁻³	1.5×10-3	2×10-9		
Imin [A]	0.15×10 ⁻³	15×10 ⁻⁶	28×10 ⁻⁶	4×10 ⁻¹²		
$\varepsilon_{\rm rms,geo}[\pi \rm mm mrad]$	45	1.9	0.73-6.1	0.73-1.43(V)		
$\epsilon_{90,geo}$ [π mm mrad]	180	9.4	3.66-30.4	3.66-7.14 (V) 5.0 (H)		
Magnetic rigidity [T m]	0.039	0.76	0.76-6.34	3.25-6.34		
$(\Delta p/p)_{tot}$	±1.0‰	±(1.2-2.0)‰	±(1.2-2.9)‰	±(0.4-0.6)‰		

Magnets' cycle

Machine cycle

Slow extraction

"Peeling" the beam

Beam

Electrostatic septum

Betatron core

 $\Delta \Phi$ = 2.46 Wb

Sensitivity to gap between halves

Magnetic screen needed

Empty bucket

Air core quadrupole

Ripple compensation

Sampling frequency 10 kHz

2

1

FeedBack vs FeedForward

Beam at HEBT entrance

Chopper

Fast turn on/off for the beam

Intrinsically safe

Allows beam qualification

Chopped beam

Beam measurement at isocenter

Beam position at HEBT end

Beam position repeatability (at the same energy): 0.2 mm Beam position precision (at different energies): 0.3 mm

Beam size at nozzle

Accelerated / Isocenter protons

Beam delivery – scanning control

1 Integral chamber:

- Beam Intensity measure every 1 µs
- 2 Strip chambers (X and Y):
- Beam position measure every 100 μs, with 100 μm of precision

1 Integral chamber:

- Beam Intensity measure every 1 μs
- 1 Pixel chamber:
- Beam position and dimension measure every 100 μ s/1 ms, with 200 μ m of precision

Monitor dimensions

Courtesy of Marco Donetti

BOX 1 - BOX 2

Courtesy of Marco Donetti

Dose delivery

First scannings

Artistic use of the beam

Radiochromic film

Treatment room

In vitro measurements

Survival curves- Proton: HSG cells

Milestones

MARCH 2005 "posa della prima pietra"

SEPTEMBER 2010 FIRST BEAM ACCELERATED IN THE SYNCHROTRON

OCTOBER 2010 FIRST BRAGG PEAK MEASURED IN TREATMENT ROOM

FIRST BEAM ACCELERATED IN THE SYNCHROTRON

SEPTEMBER 2010

OCTOBER 2010 FIRST BRAGG PEAK MEASURED IN TREATMENT ROOM

الاستا محتشأ فأبغ فسيتركش فاستأبع فرط يلايان وتقو

Start of medical activities

First patient with Proton beam September 22, 2011)

Conclusions

□ The machine construction is finished

Treatment with protons have started

Treatment with carbon already authorized

There is still a lot of space to improve performances (treatment rooms, vertical line, treatment time, beam size, ...)

Thank you for your attention