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SOLID STATE MICRODOSIMETERS

Si-devices can provide CHALLENGING DEVICES

sensitive zones of the FOR MICRODOSIMETRY
order of a micrometer

HOW a Si-DEVICE BASED MICRODOSIMETER?...
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SEGMENTED SILICON TELESCOPE

Silicon telescope: —

a thin AE stage (1.9 ym thick) (=19 )
coupled to a residual energy
stage E (500 pm thick) E stage (& 500 um)

on the same silicon wafer.
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AE stage: matrix of cylindrical_diodes (h= 2 um , d=9 ym)

AE element

More than 7000 pixels are connected in parallel to give an effective
detection area of the AE stage of about 0.5 mm?



MICRODOSIMETRIC SPECTRA: TISSUE-EQUIVALENCE
AND GEOMETRICAL CORRECTIONS

In order to derive microdosimetric spectra similar to those acquired by
a TEPC, corrections were studied and discussed in details [1,2]

Tissue equivalence of silicon

The telescope allows to optimize the tissue equivalence
correction by measuring event-by-event the energy of the
Impinging particles and by discriminating them.

Shape equivalence

By following a parametric criteria given in literature, the lineal
energy y was calculated by considering an equivalent mean
cord length.

1. S. Agosteo, P. Colautti, A. Fazzi, D. Moro and A. Pola, “A Solid State Microdosimeter
based on a Monolithic Silicon Telescope”, Radiat. Prot. Dosim. 122, 382-386 (2006).

2. S. Agosteo, P.G. Fallica, A. Fazzi, M.V. Introini, A. Pola, G. Valvo, “A Pixelated Silicon
Telescope for Solid State Microdosimeter”, Radiat. Meas., accepted for publication.



TISSUE EQUIVALENCE CORRECTION

The tissue equivalence of silicon device requires:

A suitable correction to the measured distribution in order to
obtain a spectrum equivalent to that acquired with an
hypothetical tissue AE detector

Analytical procedure for tissue-equivalence correction

Tissue STiSSUG(Ep)
Ed\ (E,.) =E5 (E,. 1) SE,)

4

Energy deposited along a track of length | Scalin_g factor : |
by recoil-protons of energy E, in a tissue- stopping powers ratio
equivalent AE detector



TISSUE-EQUIVALENCE CORRECTION

c STissue (E) | —— Protons
The scaling factor —
S™(E)
depends on the energy and
the type of the impinging
particle
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E stage of the telescope
and AE-E scatter-plot 10000

Limits:
the thickness of the E stage restricts the TE correction to recoil-
protons below 8 MeV (alphas below 32 MeV)

Electrons release only part of their energy in the E stage

H
Mean value over a wide energy range (0-10 MeV) = 0.53




SHAPE ANALYSIS

Pixelated silicon telescope (d=10 pm)

The correcting procedure can be
based on cord length _ -
distributions, since AE pixels are | T iarien e oeoPe
cylinders of micrometric size in all
dimensions (as the TEPCSs).
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Correction is only geometry-
dependent (no energy limit)




SHAPE ANALYSIS

The equivalence of shapes is based on the parametric criteria given in
the literature (Kellerer).

By assuming a constant linear energy transfer L.:
o0

j 1 p(D)d

g =ML ; =L,

By equating the dose-mean energy imparted per event for the two
different shapes considered:

ITEPC

—AE _ L lAE — —TEPC L lTEPC

g =0.533

1’] —
D
Dimensions of AE stages were scaled by a factorn ...

.. the lineal energy y was calculated by considering an equivalent
mean cord length equal to:

IAE,eq — IAE



RESPONSE TO PROTONS:

Irradiations with
62 MeV modulated proton beam
at CATANA facility
(LNS-INFN Catania)
and

comparison with cylindrical TEPC
(De Nardo et al., RPD 110, 1-4 (2004)



62 MeV modulated proton beam (CATANA)
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Energy deposited in the AE stage (keV)

62 MeV modulated proton beam (CATANA)
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Comparison with cylindrical TEPC: proximal part of the SOBP
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62 MeV modulated proton beam (CATANA)

Results:

 easy-of-use system;

* rapid data processing;

« good measurement repeatability;

* high spatial resolution;

» good agreement at lineal energies higher than 7-10 keV um-tup to the proton
edge.

Problems to solve or to minimize:

* high electronic noise;

 counting rates, mainly related to the relative dimension between AE stage and
E stage active areas.

Issues:
 accurate estimate of dose profile;
* radiation damage.



RESPONSE TO CARBON IONS:

Irradiations with
62 MeV /u un-modulated carbon beam
at CATANA facility
(LNS-INFN Catania)
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relative Dose

y d(y)

62 MeV /u un-modulated carbon beam (CATANA)
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62 MeV /u un-modulated carbon beam (CATANA)
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62 MeV /u un-modulated carbon beam (CATANA)

Results:

* high spatial resolution;

» capability of operating in a complex and intense radiation field;
« discrimination capability and potentialities.

Problems to solve or to minimize:

* relative dimension between AE stage and E stage active areas;
* counting rates;

* radiation damage.



RESPONSE TO NEUTRONS:

Irradiations with
different energy neutron beam
at CN Van de Graaff facility
(LNL-INFN Legnaro)



Device coupled to A150 plastic:
Irradiation with monoenergetic neutrons

A150 plastic

> 1 mm thick E detector
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Irradiation with fast neutrons at different energies
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Direct comparison with a cylindrical TEPC:
y- distribution at different neutron energies E_

—®— Silicon Telescope
—e— Cylindrical TEPC (d = 2 um)

Uncertainties:
Si Telescope 8% -11%
TEPC: 4% - 7%
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Irradiation with fast neutrons at different energies

Results:

* easy-of-use system;

« good measurement repeatability;

» good agreement at lineal energies higher than 7-10 keV um-tup to the proton

edge.

Problems to solve or to minimize:
* high electronic noise;
» thick detector dead layer.

Issues:

* poly-energetic neutron fields;

e angular response;

« contribution of electrons to microdosimetric spectra (low y- values).



CONCLUSIONS

IMPROVEMENT OF THE ENERGY
TRESHOLD:

A feasibility study of a low-LET
silicon microdosimeter



Improvement of the energy threshold

The main limitation of the system is the high energy threshold imposed by the
electronic noise.

New design of the segmented telescope with a AE stage having a lower number
of cylinders connected in parallel and an E stage with an optimized sensitive
area

1. Decrease the energy threshold below 1 keV ym-1
2. Optimize the counting rate of the two stages

A feasibility study with a low-noise set-up based on discrete components was
carried out in order to test this assertion



Improvement of the energy threshold:
Test with a Cesium-137 source

A telescope constituted by a single AE cylinder coupled to an E stage
was irradiated with B particles emitted by a 13’Cs source

—— Monopixel




Improvement of the energy threshold:
Test of the tissue-equivalence correction procedure for electrons

Crrrr ' L | ' LI |
—— FLUKA simulation (tissue) .
Experimental

Lineal energy threshold = 0.6 keV pm-?
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Improvement of the energy threshold:
Irradiation with 2.3 MeV neutrons at LNL CN facility

Cylindrical TEPC
AE Pixel Matrix
AE MonoPixel
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