Miniaturized Tracking System Based on Timepix Detector

Jan Jakůbek

Institute of Experimental and Applied Physics,
Czech Technical University in Prague

Timepix pixel device single particle counting pixel detector

- Planar pixelated detector (Si, GaAs, CdTe, thickness: 150/300/700/1000mm ...)
- Bump-bonded to readout chip containing in each pixelsell: amplifier, discriminator, Counter or ADC 0 Timer
- Multichip assemblies with no blind area: Quad ($30 \times 30 \mathrm{~mm}$), Hexa ($45 \times 30 \mathrm{~mm}$)

Particle tracking with pixel detectors

Radiation background

Protons recoiled by fast neutrons

Heavy charged particles: Charge sharing effect

- Particle creates a huge charge in the sensor.
- The charge is collected by external electric field $=>$ the process takes some time
- The charge cloud expands (diffusion, repulsion, ...)
- The charge cloud overlaps several adjacent pixels => CLUSTER
- Pixels overlapped by the charge cloud detect the charge if it is higher then threshold.

Am241+ Pu239 combined alpha source (5.2 and 5.5 MeV, measured in air)

Timepix measures charge in each pixel

Heavy charged particles:
 Subpixel resolution

- Charge sharing and cluster shape depends on detector bias voltage. For low bias a diffusion dominates => Gaussian cluster shape

Vbias=7.2V

Deeply subpixel spatial resolution with ions: Ion Microbeam (IBIC ANSTO)

Microbeam spots (5.5 MeV alphas):

Imaging of Cu grid (pitch of $25 \mu \mathrm{~m}$)

Resolution: 880 nm (the limit of microbeam)

Charge sharing effect:
 Tracks of MIP particles - Cosmics

Track recorded by TimePix device
Energy distribution fit by convolution of Landau and Gauss distribution

Proton tracking:
 Can we determine 3D direction from measured data?

Asymetric clusters
11 MeV proton track $\left(85^{\circ}\right)$

- Energy losses defined by Bragg curve, charge spreads according to gauss distribution (low bias voltage) $=>$ model can be assembled

11 MeV protons at 85 deg

CNAO ARDENT meeting, 19th October 2012

Typical images observed with ion beam at grazing impact angle

Protons 48 MeV Protons 221 MeV

Only protons and their scattering, no secondaries.

Many secondaries, (delta electrons fragments).

Carbons $89 \mathrm{MeV} / \mathrm{u}$ Carbons $430 \mathrm{MeV} / \mathrm{u}$

Carbons and protons and their scattering, no secondaries.

Carbons and many secondaries.

Can we do the reconstruction of directions?

And can we do it on-line?

Hadron therapy:

Recorded track types

Several basic track types identified:

* Primary proton tracks (keeping direction)
* Scattered protons (change of directions)
- Tracks of recoiled nuclei
* Delta electrons
- Fragmentation
- Electrons
- Low energy electrons and X-rays

Proton track: LET and Bragg curve

Voxel detector Composed of several Timepix layers

Voxel detector concept

- Transition from 2D position sensitive detector to 3D => Voxel detector

Task 1:

Readout chip thinning

- For gamma camera and light particles the readout chip is too thick ($\sim 740 \mu \mathrm{~m}$).
- It should be as thin as possible
- We have tested the method of polishing out the unwanted material

$$
100-500 \mu \mathrm{~m}
$$

Variable setup: Any number of chips can be stacked

Sample image taken with 48 MeV protons

How to identify tracks?
a) Time mode (select clusters with same timestamp)
b) Use geometry (track clusters should lie on straight line)

Dose delivery imaging for hadron therapy: Tracking of secondary particles

- The tracker would optimally surround the irradiated body.
- Tracker data can be back-projected to form an image of the beam path.
- Possibility to select particles with higher penetration power would improve quality.

Voxel detector in Time mode: Experimental setup

Observation of complete scene: Beam line can be imaged

Observation of complete scene: Beam line can be imaged

Middle clusters (protons)

Large clusters
(low E protons, ions)

Geometrical efficiency $=10^{-5}\left(\right.$ Sensor $=2 \mathrm{~cm}^{2}$, distance $\left.=140 \mathrm{~cm}\right)$, time $=8 \mathbf{~ m i n}$

Other techniques: Imaging based on scattering

Investigated object

Wider distribution behind of thicker part of object

What to be improved?

- Energy information is missing in Timepix mode (measuring time)
\Rightarrow We cannot sort particle types according to $\Delta \mathrm{E}$:
- Cannot precisely evaluate biological effects of particles (if used in dosimetry)
- Cannot select just certain particle types (if used for imaging)

Energy sensitivity

- Combination of Energy and Time modes in different layers allows identification of coincident tracks and vertex.
- ΔE allows particle sorting
- But: Highly complex data processing

Sample image taken with 4 layers
Third layer: time
Two tracks with same timestamp (coincidence):
\Rightarrow Vertex identified
\Rightarrow reliable reconstruction

Geometrical track identification

Assumption:

- Straight tracks (for ions and MIPs).

Problems:

- Impossible to check all combinations - too high complexity even with low occupancy (single frame from 4 layers with 100 tracks give 10^{8} combinations)
- The option would be to select candidates in the first layers and check them in remaining layers => complexity is still very high due to searching for candidates $\left(10^{4}\right)$ followed by seeking of their continuations.

Can we use estimation of the track direction based on single layer data to reduce the problem complexity?

Particle direction determination

Assumption:

- Ions are able to fully penetrate the sensor (they are not absorbed)

Requested algorithm properties:

- Distinguishing of badly shaped clusters (not caused by ions)
- Better is to loose some good clusters than to positively qualify bad ones
- Algorithm should be simple and fast (no fitting of any complex model)

The task has three parts:

- Finding axis of the cluster in detector plane => Rotation angle
- Finding length of the cluster to determine the impact angle $=>$ Elevation angle
- Determine track orientation

CNAO ARDENT meeting,

Track Orientation

Impact direction determination Methods

Rotation is calculated using least-square fit:

- Axis goes through center of gravity
- Angle is determined minimizing perpendicular distance of pixels from axis using energy as weighting factor (version of linear regression)

Cluster length determination methods:

- Linear Length: The distance of the two most distant pixels along cluster axis - doesn't take into account charge sharing effect.
- Linear length shortened by:
a) width of the cluster (Used in pixelman for dose calculation in space - ISS)
b) width of gaussian distribution (at some threshold) of distances of pixels from cluster axis
- Linear profile:
- Cluster is divided to many sections along the axis
- Distribution of pixel distance from the axis is calculated in each section evaluating mean point and sigma
- Dispersion (sigma) at the beginning and end are used for calculation of the length

Impact direction determination

Profile along clustr axis

- Cluster is divided to many sections along the axis
- Distribution of pixel distance from the axis is calculated in each section evaluating mean point and sigma
- Dispersion (sigma) at the beginning and end are used for calculation of the length

Profile along cluster axis
 Sample results for 48 MeV protons

Cluster rotation and elevation

Linear energy transfer (LET)

Efficient cluster search

Goal:

- To find cluster closest to certain point
=> Searching in spirals

Reduction of complexity by factor of 10000.

Using particle direction calculated in the first layer

Tracking: Track angle

Rotation
Elevatior

CNAO ARDENT meeting,
19th October 2012

The principle works. Can we use it for two layers only?

- Detector with 4 layers was irradiated at angle of 60 degrees => two layers are hit by each particle in most cases
- Try to localize tracks intteracting in the first layer.

Processing of such frame would take 6 million of line calculations and wouldn't end with any result.

50 tracks per layer

$3^{\text {rd }}$ layer $4^{\text {th }}$ layer

All events

Identified tracks In all layers

Neutron detection By Timepix telescope

Detection of slow/fast neutrons with very high selectivity and background rejection

Multilayer detecting structure:

Strong selection criteria:

1. Coincidence/anticoincidence technique (trigger sources: all Timepixes, SiPMs)
2. Total energy has to correspond to n capture by ${ }^{6} \mathrm{Li}$
3. Cluster shape has to be correct
\Rightarrow Extremely high selectivity for thermal and fast neutrons.
\Rightarrow Primary lons and MIPs are identified very well too.
\Rightarrow The detection efficiency is increased using many layers.
\Rightarrow Can work as Compton camera as well.

Experimental verification in HIT Heidelberg

- Interlacing neutron convertors in the stack we can resolve neutrons
- Anticoincidence mode to reject ions
* With different convertors such as PE and ${ }^{6}$ LiF we can discriminate fast and slow neutrons

Water tank results:

	Beam 1: 13 cm from tank edge	Beam 2: 3 cm from tank edge
		${ }^{6} \mathrm{LiF} \rightarrow$ Fast/Slow $=6.70$

Position sensitive scintillator + 因 Timepix => new hybrid detector

- More information can be acquired
- Both directional and energy sensitivity can be achieved

Photomultiplier 4x4 array produced by SensL company. Devices can be tiled for larger areas.

Prototype of hybrid detector

- Layer carrying SiPM matrix and plastic scintillator was built. The layer is compatible with Timepix stack. Many layers can be combined.

Two parts of the detecting structure: TimePix detector (left) and silicon photomultiplier array (right) are assembled face to face.

Prototype of the fast neutron detector. Stackable structure allows to add

First experimental results

- 14 MeV neutrons from D-T generator used
- Complex coincidence logic used for triggering

Only one sensitive SiPM element can be chosen without officiating of the other elements (left). But the condition can be more strict, e.g. valid for element 1 while invalid for 2, 3, 4 (right). The cloud become asymmetrical.

The response of the intersection of two neighboring elements in perpendicular neutron field creates centric cloud. Rotation of the filed moves the midpoint of the cloud. The angle of rotation can be estimated from change of the position.

IEAP - CTU Prague 38

Conclusions

- Handheld particle tracking system exists.
- The Timepix based system allows particle discrimination resolving light particles, ions and neutrons.
- Combination of Energy and Time modes in different layers allows identification of coincident tracks and vertexes.

Current technological challenges:

- Fast sparse readout, smaller pixels, larger area ...
- New interface FITPix 3.0 allows 870 fps (0.5 M tracks/s)
- New chips are coming: Timepix3, SmallPix
- Large area: Edgeless sensors allow seamless tiling ($6 \times 6 \mathrm{~cm}^{2} 1$ Mpix prototype exist, $14 \times 14 \mathrm{~cm}^{2} 6.5$ Mpix is coming)

Thanks for your attention

