
C. Civinini, L. Silvestris and A. Tricomi
INFN

Status	
 of	
 Pile-­‐up	
 Task	

(CMS)

11/04/2013	
 1	
 AIDA-­‐WP2	
 Mee<ng	
 -­‐	
 L.	
 Silvestris	

Aida WP2 – INFN contribution

•  Our	
 contribu<on	
 to	
 WP2:	
 	

–  Development	
 of	
 a	
 toolkit	
 to	
 handle	
 high	
 mul<plicity	
 events	

	
 	

•  Pile	
 up	
 in	
 SLHC	
 will	
 increase	
 with	
 respect	
 to	
 “nominal	

(2011)”	
 LHC	
 à	
 more	
 efficient	
 way	
 needed	
 to	

manage	
 high	
 par<cle	
 mu<plicity	
 events	

– Working	
 on	
 improving	
 CMS	
 Mixing	
 Module	
 and	
 Tracking	
 	

soTware	
 for	
 post-­‐long	
 shoutdown	
 1	
 (2015)	
 and	
 Tracker	

Phase	
 1	
 upgrade	
 (2017)	

	

11/04/2013	
 2	
 AIDA-­‐WP2	
 Mee<ng	
 -­‐	
 L.	
 Silvestris	

Outline

•  A	
 glimpse	
 of	
 the	
 CMS	
 Processing	
 Model	

•  Mixing	
 Module	
 improvements	
 from	
 2011	
 to	
 2013	

•  A	
 glimpse	
 on	
 the	
 CMS	
 Tracking	
 implementa<on	

•  The	
 tracking	
 evolu<on	
 from	
 2011	
 to	
 2012	

•  The	
 challenge	
 of	
 2015	
 data	
 taking	

•  Raw	
 ideas	
 for	
 new	
 tracking	
 algorithms	

•  For	
 help	
 and	
 material,	
 many	
 thanks	
 to	
 several	
 Tracking	
 group,	

Offline	
 and	
 PPD	
 team	
 people	
 (CMS	
 Collabora<on)	

	

11/04/2013	
 3	
 AIDA-­‐WP2	
 Mee<ng	
 -­‐	
 L.	
 Silvestris	

4	

CMS: Processing Model

Modules are configurable and communicate via the Event

https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookCMSSWFramework

11/04/2013	
 AIDA-­‐WP2	
 Mee<ng	
 -­‐	
 L.	
 Silvestris	

Software Components in MC Production

•  Workflows	
 for	
 MC	
 produc<on	
 in	
 CMS	
 include	
 the	
 following	

components;	

–  Event	
 Genera<on	

–  Full	
 Detector	
 simula<on:	
 SimHits	
 produc<on	
 using	
 Geant4	

–  Mixing	
 Module:	
 soTware	
 for	
 superimposing	
 secondary	
 pile-­‐up	
 (in	
 <me	

and	
 out	
 of	
 <me)	
 events	
 to	
 a	
 signal	
 event	

–  Digi<za<on:	
 soTware	
 for	
 modelling	
 electronics	
 response	
 in	
 the	

different	
 detectors	

–  Detector	
 reconstruc<on	
 (
 Tracks,	
 ECAL	
 Reco,	
 …)	

•  Increasing	
 the	
 number	
 of	
 pile-­‐up	
 events:	
 Mixing	
 Module	
 and	

Reconstruc<on	
 code	
 (mainly	
 tracking	
 code)	
 need	
 to	
 be	

op<mized	

11/04/2013	
 5	
 AIDA-­‐WP2	
 Mee<ng	
 -­‐	
 L.	
 Silvestris	

Mixing Module Improvements from 2011 to 2013

•  Mixing	
 module	
 superimpose	
 pileup	
 events	
 to	
 a	
 signal	
 event	

•  2011	
 implementa<on:	

–  copies	
 the	
 signal	
 data	
 into	
 the	
 CrossingFrame	
 at	
 bunchcrossing	
 0	

–  Loop	
 over	
 all	
 bunch-­‐crossing	
 (depending	
 from	
 the	
 configura<on)	

–  For	
 each	
 bunch-­‐crossing	
 it	
 decides	
 which	
 number	
 of	
 events	
 and	
 from	

which	
 source	
 should	
 be	
 added	

–  For	
 each	
 bunch-­‐crossing	
 and	
 for	
 each	
 type	
 of	
 data	
 (PSimHits,	

PCaloHits,..)	
 it	
 adds	
 the	
 corresponding	
 objects	
 from	
 the	
 read	
 event	

into	
 a	
 secondary	
 (in	
 memory)	
 stream	
 (Crossing	
 Frame)	
 	

–  The	
 Crossing	
 Frame	
 is	
 then	
 used	
 during	
 the	
 digi<za<on	
 step,	
 i.e.	

during	
 next	
 step	
 in	
 the	
 MC	
 Produc<on	

•  Major	
 drawback:	
 memory	
 increase	
 linearly	
 with	
 the	
 number	

of	
 pile-­‐up	
 events	
 up	
 to	
 2GB/core	
 with	
 100	
 pile-­‐up	
 events	
 and	

3	
 bunch-­‐crossing	
 (300	
 events)	

11/04/2013	
 6	
 AIDA-­‐WP2	
 Mee<ng	
 -­‐	
 L.	
 Silvestris	

Mixing Module Improvements from 2011 to 2013
•  Memory	
 Improvements:	

–  The	
 current	
 implementa<on	
 has	
 changed	
 the	
 MC	
 produc<on	
 workflow	

–  The	
 mixing	
 module	
 and	
 the	
 digi<za<on	
 step	
 are	
 done	
 in	
 series	
 	

–  In	
 this	
 way	
 we	
 don’t	
 need	
 to	
 keep	
 in	
 memory	
 the	
 secondary	
 stream	

(CrossingFrame)	

–  Applying	
 such	
 trick	
 we	
 keep	
 the	
 memory	
 under	
 2	
 GB/core	
 with	
 140	
 pile-­‐up	

events	
 and	
 5	
 bunch	
 crossing	
 (700	
 events),	
 i.e.	
 future	
 LHC	
 configura<ons	

•  CPU	
 improvements	
 (addi<onal	
 improvements):	

–  Now	
 we	
 are	
 moving	
 to	
 study	
 the	
 CPU	
 effects.	
 Up	
 to	
 now	
 the	
 digi<za<on	
 <me	
 has	

been	
 negligible	
 respect	
 to	
 simula<on	
 and	
 mixing	
 <me,	
 but	
 this	
 will	
 change	

soon…	

•  PU	
 140	
 BX	
 5	
 (25ns):	
 700	
 event	
 to	
 mix	
 à	
 RSS	
 1.7	
 GB	
 CPU	
 59	
 sec	

•  PU	
 40	
 BX	
 15	
 (25ns):	
 600	
 events	
 to	
 mix	
 à	
 RSS	
 1.5	
 GB	
 CPU	
 27	
 sec	
 (worse	
 by	
 factor	
 3	
 for	
 phase1)	

•  PU	
 20	
 BX	
 15	
 (25ns):	
 300	
 events	
 to	
 mix	
 à	
 RSS	
 1.2	
 GB	
 CPU	
 12	
 sec	
 	

•  Summer	
 12	
 MC	
 Prod	
 à	
 	
 1	
 GB	
 CPU	
 5	
 sec	

–  These	
 results	
 are	
 very	
 very	
 preliminary	
 and	
 most	
 probably	
 will	
 bring	
 addi<onal	

changes	
 in	
 the	
 MC	
 produc<on	
 workflow;	
 Keep	
 tuned	
 for	
 next	
 <me.	

11/04/2013	
 7	
 AIDA-­‐WP2	
 Mee<ng	
 -­‐	
 L.	
 Silvestris	

The largest Silicon Tracker

11/04/2013	
 8	
 AIDA-­‐WP2	
 Mee<ng	
 -­‐	
 L.	
 Silvestris	

Pixel	
 Detector	

66M	
 channels	

100x150	
 μm2	
 pixel	

LHC	
 radia<on	
 resistant	

Si-­‐Strip	
 detector	

~23m3;	
 ~200m2	
 of	
 Si	
 area;	

~9x106	
 channels;	

LHC	
 radia<on	
 resistant	

TIB
Inner Barrel
4 layers TID

Inner Disks
3+3 disks

TEC Endcap
9+9 disks

Tracker
Support
Tube

TOB
Outer Barrel
6 layers

L~5.4m
∅~2.4m

PXL
Pixel Detector
3 layers, 2+2 disks

9	

The CMS Silicon Tracker Layout

Double Sided
Single Sided

η=2.5

50 120

η=0.9

280

TEC TOB

TIB TID
20

54

110

z [cm]

R
[cm]

PXL

Basic Performances

σ(PT)/PT ~1-2% (PT~100 GeV/c)

IP resolution ~10-20μm (PT=100-10 GeV/c)

10	

CMS tracking in a nutshell
Seeding	
 starts	
 from	
 innermost	
 pixel	

layers	
 (pairs	
 +	
 PV,	
 triplets).	
 Inside-­‐out	

trajectory	
 building	
 through	
 paqern	

recogni<on	
 (based	
 on	
 Kalman	
 Filter).	

Track	
 Parameters:	
 q/p,	
 η,	
 φ,	
 dZ,	
 dXY	

Parameters	
 propagated	
 through	
 magne<c	
 field	
 	

inhomogenei<es	
 using	
 Runge-­‐Ku5a	
 propagator	

✘✘ ✔ x

Rejec<on	
 of	
 outlier	
 hits	
 and	
 final	
 fit,	
 also	

based	
 on	
 Kalman	
 Filter.	
 Final	
 quality	

selec<on	
 of	
 tracks.	
 Primary	
 Vertex	
 used	

in	
 tracking	
 derived	
 from	
 pixel-­‐based	

algorithm.	

Iterative tracking. A factor 2.5 of improvement in the CPU time has been obtained by
optimizing the iterative tracking, as detailed in table 2 to be compared with table 1 that
summarizes the baseline configuration of CMSSW 4.2.x. As can be seen, the net e↵ect
is an increase of the e↵ective PT threshold for track reconstruction together with tighter
constraint on impact parameter. This configuration results into a reduced e�ciency for PT

lower than 300MeV/c but an e�ciency for PT greater than 0.9GeV/c larger by ⇠ 1% with
a ⇠ 8% reduction of the fake rate.

Reconstruction of photon conversions. Reconstruction of photon conversion in the tracker
volume is heavily a↵ected by the higher PT threshold and by the tighter impact parameter
cuts since conversion tracks are typically soft and displaced. To recover this loss, a
dedicated seeding has been deployed [6] and the photon conversion reconstruction has been
further optimized resulting in a factor 12 improvement of the CPU time for conversion
reconstruction.

Reconstruction of primary vertices. The reconstruction of primary vertices in the event
has been optimized by integrating into the same module all the di↵erent reconstruction
methods; the removal of the overhead due to the module split we had beforehand was
enough to gain a factor two in CPU time in this specific context.

Reconstruction of nuclear interactions. Similarly to photon conversions, also nuclear
interactions are reconstructed for tracker material studies and to correctly estimate

Table 1. Relevant parameters of the six iterative tracking steps in CMSSW 4.2.x, i.e. before
the reconstruction improvement campaign described in this paper; � represents the beam spot
size along the z axis and d0 and z0 are the transverse (i.e. in the xy plane) and longitudinal
impact parameters, respectively.

#step seed type seed subdetectors P

min
T [GeV/c] d0 cut z0 cut

0 triplet pixel 0.8 0.2 cm 3.0�
1 pair pixel/TEC 0.6 0.05 cm 0.6 cm
2 triplet pixel 0.075 0.2 cm 3.3�
3 triplet pixel/TIB/TID/TEC 0.25-0.35 2.0 cm 10.0 cm
4 pair TIB/TID/TEC 0.5 2.0 cm 12.0 cm
5 pair TOB/TEC 0.6 6.0 cm 30.0 cm

Table 2. Relevant parameters of the seven tracking iterative steps in CMSSW 4.4.x, after the
first phase of the improvement campaign in fall 2011; in bold the parameters changed with
respect to the corresponding steps in CMSSW 4.2.x (see table 1); step #1 is brand new with
respect to CMSSW 4.2.x; see table 1 caption for symbol definitions.

#step seed type seed subdetectors P

min
T [GeV/c] d0 cut z0 cut

0 triplet pixel 0.6 0.03 cm 4.0�
1 triplet pixel 0.2 0.03 cm 4.0�
2 pair pixel 0.6 0.01 cm 0.09 cm
3 triplet pixel 0.2 1.0 cm 4.0�
4 triplet pixel/TIB/TID/TEC 0.35-0.5 2.0 cm 10.0 cm
5 pair TIB/TID/TEC 0.6 2.0 cm 10.0 cm
6 pair TOB/TEC 0.6 2.0 cm 30.0 cm

11	

Itera<ve	
 tracking	

The	
 CMS	
 tracking	
 relies	
 on	
 itera<ons	
 (steps)	
 of	
 the	
 tracking	
 procedure;	
 each	
 step	

works	
 on	
 the	
 remaining	
 not-­‐yet-­‐associated	
 hits	
 and	
 is	
 op<mized	
 with	
 respect	
 to	

the	
 seeding	
 topology	
 and	
 to	
 the	
 final	
 quality	
 cuts.	

Iterative tracking in 2011 (CMSSW 42x)

12	

Tracking evolution from
from 1032/cm2/s (2011)

to 8×1033/cm2/s (2012)
.

13	

The constraint of prompt reconstruction
Prompt	
 reconstruc<on	
 is	
 crucial	
 for	
 a	
 discovery	
 experiment:	
 quasi	
 real-­‐<me	

physics	
 results,	
 fast	
 deep	
 feedback	
 on	
 detector	
 condi<ons.	
 It	
 requires	
 data	

to	
 be	
 processed	
 at	
 the	
 same	
 pace	
 as	
 they	
 are	
 produced.	
 Resources	
 and	

algorithm	
 speed	
 must	
 adapt	
 to	
 the	
 instantaneous	
 luminosity.	
 The	
 tracking	

reconstruc<on	
 soTware	
 was	
 too	
 heavy	
 (CPU	
 <me	
 and	
 memory)	
 for	
 prompt	

reconstruc<on	
 and	
 it	
 was	
 improved	
 in	
 two	
 phases:	
 fall	
 2011,	
 spring	
 2012.	

20
15

 e
st

im
at

es
 20

14	

Fall 2011 campaign: from CMSSW42x to 44x (1)
Several	
 op8miza8on	
 in	
 object	
 reconstruc8on	
 like	
 photon	
 conversion,	
 ver<ces,	

nuclear	
 interac<ons	
 with	
 significant	
 CPU	
 <me	
 gain	

Itera8ve	
 tracking	
 A	
 factor	
 2.5	
 of	
 improvement	
 in	
 the	
 CPU	
 <me	
 has	
 been	

obtained	
 by	
 op<mizing	
 the	
 itera<ve	
 tracking.	
 The	
 net	
 effect	
 is	
 an	
 increase	
 of	

the	
 effec<ve	
 PT	
 threshold	
 for	
 track	
 reconstruc<on	
 together	
 with	
 <ghter	

constraints	
 on	
 impact	
 parameter.	
 This	
 configura<on	
 results	
 in	
 a	
 reduced	

efficiency	
 for	
 PT	
 <300MeV/c	
 but	
 an	
 efficiency	
 for	
 PT>0.9	
 GeV/c	
 larger	
 by	
 ~1%	

with	
 a	
 ~8%	
 reduc<on	
 of	
 the	
 fake	
 rate.	

Iterative tracking in late 2011 (CMSSW 44x) / In bold the changes with respect to 42x

Iterative tracking. A factor 2.5 of improvement in the CPU time has been obtained by
optimizing the iterative tracking, as detailed in table 2 to be compared with table 1 that
summarizes the baseline configuration of CMSSW 4.2.x. As can be seen, the net e↵ect
is an increase of the e↵ective PT threshold for track reconstruction together with tighter
constraint on impact parameter. This configuration results into a reduced e�ciency for PT

lower than 300MeV/c but an e�ciency for PT greater than 0.9GeV/c larger by ⇠ 1% with
a ⇠ 8% reduction of the fake rate.

Reconstruction of photon conversions. Reconstruction of photon conversion in the tracker
volume is heavily a↵ected by the higher PT threshold and by the tighter impact parameter
cuts since conversion tracks are typically soft and displaced. To recover this loss, a
dedicated seeding has been deployed [6] and the photon conversion reconstruction has been
further optimized resulting in a factor 12 improvement of the CPU time for conversion
reconstruction.

Reconstruction of primary vertices. The reconstruction of primary vertices in the event
has been optimized by integrating into the same module all the di↵erent reconstruction
methods; the removal of the overhead due to the module split we had beforehand was
enough to gain a factor two in CPU time in this specific context.

Reconstruction of nuclear interactions. Similarly to photon conversions, also nuclear
interactions are reconstructed for tracker material studies and to correctly estimate

Table 1. Relevant parameters of the six iterative tracking steps in CMSSW 4.2.x, i.e. before
the reconstruction improvement campaign described in this paper; � represents the beam spot
size along the z axis and d0 and z0 are the transverse (i.e. in the xy plane) and longitudinal
impact parameters, respectively.

#step seed type seed subdetectors P

min
T [GeV/c] d0 cut z0 cut

0 triplet pixel 0.8 0.2 cm 3.0�
1 pair pixel/TEC 0.6 0.05 cm 0.6 cm
2 triplet pixel 0.075 0.2 cm 3.3�
3 triplet pixel/TIB/TID/TEC 0.25-0.35 2.0 cm 10.0 cm
4 pair TIB/TID/TEC 0.5 2.0 cm 12.0 cm
5 pair TOB/TEC 0.6 6.0 cm 30.0 cm

Table 2. Relevant parameters of the seven tracking iterative steps in CMSSW 4.4.x, after the
first phase of the improvement campaign in fall 2011; in bold the parameters changed with
respect to the corresponding steps in CMSSW 4.2.x (see table 1); step #1 is brand new with
respect to CMSSW 4.2.x; see table 1 caption for symbol definitions.

#step seed type seed subdetectors P

min
T [GeV/c] d0 cut z0 cut

0 triplet pixel 0.6 0.03 cm 4.0�
1 triplet pixel 0.2 0.03 cm 4.0�
2 pair pixel 0.6 0.01 cm 0.09 cm
3 triplet pixel 0.2 1.0 cm 4.0�
4 triplet pixel/TIB/TID/TEC 0.35-0.5 2.0 cm 10.0 cm
5 pair TIB/TID/TEC 0.6 2.0 cm 10.0 cm
6 pair TOB/TEC 0.6 2.0 cm 30.0 cm

15	

Results of fall 2011 campaign
reconstruc<on	
 CPU	
 <me	
 @30PU	
 |	
 reconstruc<on	
 CPU	
 <me	
 vs.	
 PU	

Simulated	
 QCD	
 events	

Figure 5. Pictorial representation of the kd-tree algorithm in the case of a very simple neighbor
search problem in the (⌘,�) plane: a track (represented by the “⇥” symbol) needs to be
associated to one of the calorimetric clusters represented by the dots labelled with letters. On
the left panel it is shown the way (⌘,�) is split into domains and the resulting navigation tree
is sketched on the right.

the hadronic energy fraction in jets within the Particle Flow, the global event
reconstruction [7][8], that consists in reconstructing and identifying each single particle
with an optimized combination of all subdetector information. To avoid consuming CPU
time in the heavy vertex fit with candidates that are very likely to be fakes, a very simple
preselection has been implemented: a nuclear interaction candidate track is kept only if PT

exceeds 800MeV/c, in case of primary tracks, or if the impact parameter in the xy plane
is larger then 2mm for secondary tracks; the vertex candidate must have at least three
tracks (one primary and two secondaries or three secondaries) and, finally, candidates are
discarded if the secondary vertex estimate falls within the beam pipe. These simple criteria
are enough to reduce the combinatorics such that the nuclear interaction reconstruction
gains a factor 5 in CPU time with no observable degradation in physics performances.

Particle flow links. The Particle Flow algorithm needs to link tracks to calorimetric clusters
in the (⌘,�) parameter space. This problem of nearest neighbor search over a large number
of objects in CMSSW 4.2.x is implemented with nested loops and results to be rather time
intensive. Moreover the complexity scales quadratically (N2) as the object multiplicity N

increases. In CMSSW 4.4.x the well known linearization technique known as kd-tree [9] has
been introduced to replace nested loops. The method consists in an algorithm that, starting
from a collection of objects (calorimetric cluster, for example), dynamically splits the (⌘,�)

Figure 6. Breakdown of the
average CPU time per event in
arbitrary units before and after ‘Fall
2011’ for each improvement area of
the tracking reconstruction software
(simulated QCD events with 30 pile-
up interactions).

Figure 7. Total reconstruction
CPU time per event (in arbitrary
units) for as a function of pile-up
events for simulated QCD events
for the baseline CMSSW and the
improved version.

space into appropriate domains, each containing one single object, organized in a tree. The
closest cluster to a given track can be found by exploring the (⌘,�) space with a very fast
binary search that ends up in the closest neighbor domain. This algorithm, schematically
represented in figure 5, has a complexity that scales as N · logN , thus more convenient with
respect to standard nested loops especially for large multiplicity, and allows to gain a factor
4 in CPU time in this specific application. Its extension to other modules of CMSSW is
being studied.

The results of the improvements just described are graphically represented in figure 6 and
figure 7. In the former the breakdown of the CPU time for each improvement area before
and after each improvement is reported for simulated QCD events with 30 pile-up interactions
per event; in the latter the total CPU time is shown as a function of the number of pile-up
interactions for simulated QCD events.

The CMSSW 4.4.x releases derived from the “fall 2011” campaign have been fully validated
and have been accepted for production since changes in performaces are minor with respect to
physics outcome.

3. Spring 2012 campaign
The modifications put in place in the second phase of the improvement campaign have been
developed on top of CMSSW version 4.4.x and implemented in the CMSSW version 5.2.x.
Again a group of improvements are based on better coding and technological improvements and
do not change the physics outcome. More in detail, these modifications are described below.

Change of compiler version. The implementation of CMSSW 5.2.x has been accompanied
by the switch from gcc 4.3.4 to gcc 4.6.2 to produce binaries. This latter compiler version
allows for faster code to be generated also thanks to some compiler specific optimizations.
The net gain is up to 10% as shown in figure 8 where the reduction in CPU time is shown as
a function of the number of pile-up vertices for simulated QCD events. Other features that
came along the new compiler version are the C++11 standard support and autovectorization
flags on by default.

JEMalloc. The concurrent malloc implementation JEMalloc, highly performant and able to
better redeem memory, has been implemented in place of the standard malloc.

Switch to improved ROOT version. The ROOT package version has been changed from
5.27 to 5.32 that features several improvements, especially in I/O with less memory required.

Several design modifications to improve speed and memory consumption. The code
has been again carefully reviewed and many improvements have been implemented. Several

of those are related to track reconstruction classes. For example, the devirtualization of the
BasicTrajectoryState class (an ancillary class for track reconstruction) resulted into a 10%
gain in speed and in some 100MB of resident set size (RSS) saved per event. Similarly the
stereo hit class (the class that stores the double sided module hits) has been considerably
slimmed down (a factor three in size) with a net decrease of RSS memory from 50MB to
150MB, depending on the event occupancy.

Another set of modifications directly a↵ects the outcome on physics output. These are
described in the following.

O✏ine vertexing. The o✏ine reconstruction of primary vertices is based on a deterministic
annealing algorithm to find the z coordinate of the vertices. Major improvements have been
deployed for CMSSW 5.2.x: loops have been autovectorized (thanks to the introduction of
the new compiler) but, to further profit of autovectorization capabilities, the exponential
functions heavily used in the algorithm have been replaced with a fast, autovectorizable
inlined double precision version. Eventually the deterministic annealing algorithm has been
further made more e�cient by optimizing some configuration parameters with essentially
no change in physics performances. The net increase in CPU time amounts to a factor 3
for large PU events.

Cluster shape based seed filtering The large CPU time needed by the track reconstruction
is to be ascribed to the huge number of seeds due to hit combinatorics; in fact a propagation
has to be attempted for each of them. A way to keep this number under control is to
implement filters able to reject fake seeds. One of the most e↵ective is based on the cluster
shape. For example a track impinging a sensor with a large angle will generate a cluster
wider than a track with normal incidence. This can be used to evaluate seed compatibility
with the track hypothesis. Such a filter was used only in steps #0 and #1 in CMSSW 4.4.x
(see table 2); for CMSSW 5.2.x it has been extended also to steps #2, #4 and #5 (see
table 3) with a substantial CPU time benefit. For example, the step #2, particularly prone
to combinatorics since seeds are made up of hit pairs, sees a CPU time reduction of a factor
2.7. Overall the improvement in CPU time is of a factor 1.5. As a side e↵ect of the filter
also the fake rate is reduced by ⇠ 20%.

Iterative tracking. After all the modifications described above, also the iterative tracking
has been further optimized for CMSSW 5.2.x. Nevertheless the di↵erences, summarized
in table 3, are tiny, which demonstrates that upstream improvements are already almost
su�cient to make CMSSW compliant with requirements. There is no need to modify
deeply the iterative tracking, i.e. to reduce combinatorics and to match performance target
by increasing e↵ective PT thresholds and/or by reducing e�ciency for displaced tracks. A
relevant change introduced as part of the optimization consist of the upgrade of the final

Figure 8. Relative CPU time re-
duction to be ascribed to the intro-
duction of gcc 4.6.2 as a function of
the number of PU vertices for simu-
lated QCD events.

16	

Spring 2012 campaign: from CMSSW44x to 52x (1)

Change	
 of	
 compiler	
 switch	
 from	
 gcc	

4.3.4	
 to	
 gcc	
 4.6.2:	
 faster	
 code	

generated	
 (compiler	
 specific	

op<miza<ons),	
 C++11	
 support	
 and	

autovectoriza<on	

JEMalloc	
 standard	
 malloc	
 replaced	

by	
 JEMalloc,	
 highly	
 performant	
 and	

able	
 to	
 beqer	
 redeem	
 memory	

Improved	
 ROOT	
 version	
 from	
 5.27	

to	
 5.32	
 that	
 features	
 several	

improvements,	
 especially	
 in	
 I/O	

with	
 less	
 memory	
 required.	

Relative change of CPU reconstruction
time vs. PU Simulated QCD events

Several	
 design	
 modifica8ons	
 to	
 improve	
 speed	
 and	
 memory	
 consump<on;	
 for	
 	

example,	
 10%	
 gain	
 in	
 speed	
 and	
 in	
 some	
 100MB	
 of	
 resident	
 set	
 size	
 (RSS)	
 saved	
 per	

event	
 	
 from	
 the	
 devirtualiza<on	
 of	
 the	
 BasicTrajectoryState	
 class	
 (an	
 ancillary	
 class	

for	
 track	
 reconstruc<on);	
 stereo	
 hit	
 class	
 reduced	
 a	
 factor	
 three	
 in	
 size	
 with	
 RSS	

memory	
 down	
 to	
 	
 50MB	
 from	
 150MB	

17	

Spring 2012 campaign: from CMSSW44x to 52x (2)
Offline	
 vertexing	
 based	
 on	
 a	
 determinis<c	
 annealing	
 algorithm	
 improved:	
 loops	

autovectorized	
 (new	
 compiler),	
 exponen<al	
 func<ons	
 replaced	
 with	
 fast	

autovectorizable	
 inlined	
 double	
 precision	
 versions;	
 some	
 configura<on	

parameters	
 op<mized.	
 3x	
 gain	
 in	
 CPU	
 <me	
 with	
 no	
 change	
 in	
 performances	

Cluster-­‐shape	
 based	
 seed	
 filtering	
 extended	
 to	
 almost	
 all	
 seeding	
 step.	
 1.5x	
 	

improvement	
 in	
 CPU	
 <me.	
 Fake	
 rate	
 is	
 reduced	
 by	
 ∼	
 20%.	
 Itera<ve	
 tracking	
 Tiny	

op<miza<on	
 plus	
 upgrade	
 of	
 the	
 final	
 track	
 cleaning	
 and	
 selec<on	
 criteria.	
 No	

efficiency	
 change	
 for	
 prompts	
 tracks	
 with	
 PT>0.9	
 GeV/c,	
 but	
 fake	
 rate	
 ∼35%	

down.	

Iterative tracking in 2012 (CMSSW 52x) / In bold the changes with respect to 44x

Table 3. Relevant parameters of the seven tracking iterative steps in CMSSW 5.2.x, after
the second phase of the improvement campaign in 2012; in bold the parameters changed with
respect to the corresponding steps of CMSSW 4.4.x in table 2; see table 1 caption for symbol
definitions.

#step seed type seed subdetectors P

min
T [GeV/c] d0 cut z0 cut

0 triplet pixel 0.6 0.02 cm 4.0�
1 triplet pixel 0.2 0.02 cm 4.0�
2 pair pixel 0.6 0.015 cm 0.09 cm
3 triplet pixel 0.3 1.5 cm 2.5�
4 triplet pixel/TIB/TID/TEC 0.5-0.6 1.5 cm 10.0 cm
5 pair TIB/TID/TEC 0.6 2.0 cm 10.0 cm
6 pair TOB/TEC 0.6 2.0 cm 30.0 cm

track cleaning and selection criteria. Eventually the e�ciency for prompts tracks with PT

larger than 0.9GeV/c is not a↵ected but the fake rate is reduced by about ⇠ 35%.

The overall result obtained with the “spring 2012” campaign improvements implemented in
CMSSW 5.2.x is shown in figure 9 where the dependence of RSS memory as a function of running
time is plotted in CMSSW 4.4.x and CMSSW 5.2.x for a reconstruction job of 100 real data
events from the 2011 special run with high PU. The substantial reduction both in memory load
as well as in total running time is clearly evident.

The CMSSW 5.2.x releases have been fully validated and have been accepted for production
since changes in performaces are minor with respect to physics outcome.

4. A glimpse into the future
The challenge for the CMS reconstruction cannot be considered over with the deployment of
the software for 2012 data taking, currently ongoing. After the first long shutdown, foreseen for
almost two years in 2013 and 2014, LHC will increase center-of-mass energy and instantaneous
luminosity as well. This will require a major reengineering of the entire reconstruction software
and of the tracking.

Figure 9. RSS memory as
a function of running time in
CMSSW 4.4.x and CMSSW 5.2.x
for a reconstruction job of 100 real
data events from the 2011 special
run with high PU.

18	

Effects of CPU and memory improvements
Many	
 improvements	
 over	
 past	
 2	
 years	
 have	
 yielded	
 substan<al	
 saving	
 in	
 CPU	

and	
 memory	
 use.	

But	
 CPU	
 <me	
 s<ll	
 shows	
 significa<on	
 non-­‐lineari<es	
 with	
 pile-­‐up	

Results	
 for	
 track	
 reconstruc<on	
 only;	
 data	
 results	
 from	
 2011	
 high	
 pile-­‐up	
 run	

with	
 ~	
 35	
 pile-­‐up	

19	

The challenge of 2015 data taking

20	

2015:	
 Scary	
 PU	
 scenarios...	

21	

Strategies for 2015 and Phase 1
Generic	
 improvements	
 as	
 in	
 2011/2012	
 (smarter	
 coding,	

compilers,	
 seed	
 cleaning)	
 and	
 itera<ve	
 tracking	
 tuning	
 |	
 tracking	

developers	

Tracking	
 code	
 reengineering;	
 major	
 redesign	
 of	
 the	
 tracking	
 code	

to	
 implement	
 paralleliza<on	
 and	
 vectoriza<on	
 between	
 offline	

people	
 for	
 the	
 framework	
 (modifica<ons	
 almost	
 transparent	
 for	

the	
 user)	
 and	
 tracking	
 developers	
 (for	
 modifica<ons	
 to	
 be	

implemented	
 straight	
 into	
 the	
 tracking	
 code)	

	

New	
 tracking	
 algorithms	
 (Hough	
 transform)	

	

Developments	
 to	
 be	
 done	
 during	
 LS1	
 but	
 mainly	
 in	
 2013,	
 with	

2014	
 devoted	
 to	
 full	
 valida<on	
 and	
 MC	
 produc<ons	

22	

Proposal for Hough transform applications in CMS
Hough	
 transform	
 methods	
 cannot	
 handle	
 energy	

loss	
 and	
 mul<ple	
 scaqering;	
 they	
 are	
 probably	
 not	

suitable	
 for	
 full	
 track	
 reconstruc<on	
 in	
 CMS	
 (where	

material	
 effects	
 are	
 substan<al).	

Nevertheless,	
 Hough	
 transform	
 could	
 represent	
 a	

natural	
 way	
 to	
 combine	
 more	
 informa<on	
 than	
 just	

two/three	
 hits	
 at	
 the	
 seeding	
 level	
 in	
 a	
 fast	
 way	
 and	

without	
 entering	
 in	
 the	
 <me	
 consuming	

propaga<on.	
 Given	
 the	
 reduced	
 lever	
 arm	
 and	
 the	

reduced	
 resolu<on	
 needed,	
 material	
 effects	
 can	
 be	

probably	
 neglected	
 at	
 the	
 seeding	
 level.	

Proposal	
 for	
 Hough	
 transform	
 method	

implementa<on:	

=	
 seeding	
 in	
 the	
 outer	
 tracker	
 layers	
 combining	

informa<on	
 from	
 more	
 than	
 three	
 layers;	

=	
 4-­‐layer	
 seeding	
 for	
 the	
 phase-­‐I	
 upgraded	
 pixel	

detector.	

23	

Pixel Phase 1 Upgrade

CMS Pixel @ Phase I
Current pixel system:
3 barrel layers
2 endcap disks Current system designed to withstand L ∼200-300 fb-1

Significant radiation damage @ L>1034cm-2s-1
1st layer - 16% inefficient @ 2x1034cm-2s-1

Add 4th layer
r = 39, 68, 109 & 160 mm
Add 3rd disc
Aggressive material reduction

Module
Thinner sensor
 285µm to 225µm
Thinner ROC
 175µm to 75µm
No HV capacitor
Minimise SMD components
Micro-twisted pair
No base strips
ONE TYPE ONLY

11/04/2013	
 AIDA-­‐WP2	
 Mee<ng	
 -­‐	
 L.	
 Silvestris	

Upgrade Iterative Tracking (Stdgeom)
•  5_2_0	
 tracking	
 for	
 current	
 pixel	
 geometry	
 (from	
 “2012	
 tune”)	

–  Close	
 to	
 5_2_0	
 tracking,	
 use	
 steps	
 0-­‐2,	
 and	
 4A	
 (for	
 high	
 eta)	

–  Reduce	
 step	
 4A	
 d0	
 cut	
 to	
 reduce	
 CPU	
 and	
 memory	
 usage	

Iteration Seeds pT cut
(GeV)

d0 cut
(cm)

dz cut
(cm)

Min
hits

0 pixel triplets 0.6 0.02 4.0σbs 3
1 low pT pixel triplets 0.2 0.02 4.0σbs 3
2 pixel pairs with vtx 0.6 0.015 4.0σbs 3
3 detached triplets 0.3 1.5 15.0 3

4A pixel +(TEC(1 ring))
triplets

0.4 0.02 10.0 3

4B BPIX+TIB triplets 0.6 1.5 10.0 3
5 TIB, TID, TEC pairs

(fewer)
0.7 2.0 10.0 4

6 TOB, TEC pairs 0.6 6.0 30.0 6

Release	
 CMSSW_4_2_8_SLHCstd2_patch1	
 Tracking	
 steps	

25	

Upgrade Iterative Tracking (Phase 1)
•  5_2_0	
 tracking	
 for	
 Phase	
 1	
 geometry	
 (not	
 op<mized)	

–  Make	
 close	
 to	
 5_2_0	
 tracking,	
 use	
 steps	
 0-­‐2,	
 and	
 4A,	
 add	
 step	
 “-­‐1”	

–  Step	
 3	
 (pixel	
 pairs)	
 to	
 recover	
 efficiency	
 in	
 eta	
 ~1.2–1.4	
 region	

Iteration Seeds pT cut
(GeV)

d0 cut
(cm)

dz cut
(cm)

Min
hits

0 pixel quadruplets 0.6 0.02 4.0σbs 3
1 pixel triplets 0.6 0.02 4.0σbs 3
2 low pT pixel triplets 0.2 0.02 4.0σbs 3
3 pixel pairs with vtx 0.6 0.015 4.0σbs 3

3old detached triplets 0.3 1.5 15.0 3
4A pixel +(TEC(1 ring))

triplets
0.4 0.02 10.0 3

4B BPIX+TIB triplets 0.6 1.5 10.0 3
5 TIB, TID, TEC pairs

(fewer)
0.7 2.0 10.0 4

6 TOB, TEC pairs 0.6 6.0 30.0 6

Release	
 CMSSW_4_2_8_SLHCtk3_patch1	
 Tracking	
 steps	

26	

Average Pileup
0 20 40 60 80 100

Av
er

ag
e

Tr
ac

ki
ng

 E
ffi

ci
en

cy
 (%

)

30

40

50

60

70

80

90

100

Current Pixel Detector

Upgrade Pixel Detector

(a)

Performance: Tracking vs PU
•  Average	
 tracking	
 efficiencies	
 vs	
 PU	

–  qbar,	
 high	
 purity	
 tracks,	
 pT	
 >	
 0.9	
 GeV/c	

27	

Average Pileup
0 20 40 60 80 100

Av
er

ag
e

Tr
ac

k
Fa

ke
 R

at
e

(%
)

0

5

10

15

20

25

Current Pixel Detector

Upgrade Pixel Detector

(b)

Performance: Tracking vs PU
•  Average	
 track	
 fake	
 rates	
 vs	
 PU	

–  qbar,	
 high	
 purity	
 tracks,	
 pT	
 >	
 0.9	
 GeV/c	

28	

B-tagging Performance vs PU
•  qbar,	
 CSV	
 tagger,	
 compare	
 current	
 and	
 upgrade,	
 <PU>=50	

–  ak5PFjets	
 PFnoPU,	
 jet	
 pT	
 >	
 30	
 GeV,	
 DUS,b	
 jets	

Much Better Handling
High Pileup2.5 Robustness to Pixel Inner Layer Inefficiencies 19

Average Pileup
0 20 40 60 80 100

B
-ta

gg
in

g
Ef

fic
ie

nc
y

(%
)

0

10

20

30

40

50

60

70

80

90

100
Current Detector: light quark mis-tag = 1%
Upgrade Detector: light quark mis-tag = 1%
Current Detector: light quark mis-tag = 0.1%
Upgrade Detector: light quark mis-tag = 0.1%

(a)

Average Pileup
0 20 40 60 80 100

B
-ta

gg
in

g
Ef

fic
ie

nc
y

(%
)

0

10

20

30

40

50

60

70

80

90

100
Current Detector: c quark mis-tag = 10%
Upgrade Detector: c quark mis-tag = 10%
Current Detector: c quark mis-tag = 1%
Upgrade Detector: c quark mis-tag = 1%

(b)

Figure 18: The b-tagging efficiencies for b-jets with pT > 30 GeV/c in a tt̄ sample plotted
against average pileup for (a) light quark jet mis-tag rates of 1% (solid points) and 10% (open
points), and for (b) charm quark jet mis-tag rates of 10% (solid points) and 1% (open points).
Values for the current pixel detector are shown in circular points while those for the Phase 1
upgrade detector are shown with squares.

efficiencies in the inner pixel barrel layer (BPIX1). A tt̄ sample was used with an average pileup374

of 50, and no (dynamic) data loss was simulated in any layer other than BPIX1.375

BPIX Layer 1 Efficiency (%)
80 85 90 95 100R

at
io

 (t
o

10
0%

)

0.9
0.92
0.94
0.96
0.98

1 80 85 90 95 100

Av
er

ag
e

Tr
ac

ki
ng

 E
ffi

ci
en

cy
 (%

)

75

80

85

90

95

100

Current Pixel Detector
Upgrade Pixel Detector

(a)

BPIX Layer 1 Efficiency (%)
80 85 90 95 100R

at
io

 (t
o

10
0%

)

0.98
1

1.02
1.04
1.06
1.08

1.1 80 85 90 95 100

Av
er

ag
e

Tr
ac

k
Fa

ke
 R

at
e

(%
)

0
2
4

6
8

10
12
14

Current Pixel Detector
Upgrade Pixel Detector

(b)

Figure 19: Average tracking efficiency (a) and average track fake rate (b) for the tt̄ sample as a
function of the efficiency of the first layer of the barrel pixel detector. Results were determined
for the current pixel detector (blue squares) and for the upgrade pixel detector (red dots). The
ratios given in the lower part of the plot are to the efficiency (a) or fake rate rate (b) when the
first barrel pixel layer is 100% efficient.

The results of the tracking performance study is given in Fig. 19. It can be seen that as expected376

the average tracking efficiency drops with the inefficiency in the first pixel barrel layer for both377

the current and upgrade pixel detectors but the drop is less sharp for the upgrade detector,378

reducing the relative tracking efficiency loss by about a factor 2–3. The average track fake rate379

is also seen to increase less with the upgrade pixel detector.380

For the b-tagging study, the b-tagging performance are shown in Fig. 20. To illustrate the im-381

provement with the upgrade pixel detector for a particular operating point, the b-tagging effi-382

ciencies for a light quark mis-tag rate of 1% are plotted against the BPIX1 efficiency in Fig. 21(a).383

The relative loss of b-tagging efficiency due to inefficiencies in BPIX1 compared to when BPIX1384

is 100% efficient is shown in Fig. 21(b). Again it can be seen that the upgrade detector helps to385

24

¨  Much	
 beqer	
 handling	
 high	
 Pile-­‐Up	

Grindelwald,	
 29/08/12	
 Pixel	
 Upgrade	
 Mee<ng	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Alessia	
 Tricomi	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 29	

Future activities
•  April	
 –	
 May	
 2013	
 	

–  New	
 person	
 fully	
 dedicated	
 to	
 AIDA	
 project	
 will	
 be	
 hired	

–  New	
 person	
 will	
 be	
 fully	
 involved	
 in	
 the	
 tracking	
 code	
 developing	

for	
 2015	
 data	
 taking	
 and	
 phase	
 1	
 and	
 phase	
 2	
 prepara<on	

•  May	
 2013	
 –	
 Jul	
 2013	

–  Iden<fy	
 components	
 	
 that	
 need	
 to	
 be	
 op<mized	
 and/or	

redesigned	
 	

–  Priori<ze	
 list	
 of	
 components	

–  Start	
 the	
 itera<ve	
 procedure	
 for	
 each	
 component	
 according	
 to	

the	
 priority	
 list	
 	

•  From	
 Aug	
 2013	
 -­‐	
 for	
 each	
 component	
 the	
 following	
 step	
 will	

be	
 done	

–  Prototype	

–  Integra<on	
 into	
 the	
 CMSSW	

–  Valida<on	
 of	
 the	
 Physics	
 performance	

11/04/2013	
 AIDA-­‐WP2	
 Mee<ng	
 -­‐	
 L.	
 Silvestris	
 30	

Back up

CMSSW Performance: Digitization and Reconstruction

0	

2	

4	

6	

8	

10	

0	
 1	
 2	
 4	
 8	
 10	
 12	
 16	
 20	

Re
Di
gi
	
 8
m
e	

(S
ec
on

ds
)	
 MinBias	

TTBar	

Timing includes: Digitization
from SimHit, Packing to RAW
format
Performance review ongoing
up to 20 PU events

PileUp

11/04/2013	
 32	
 AIDA-­‐WP2	
 Mee<ng	
 -­‐	
 L.	
 Silvestris	

0	

5	

10	

15	

0	
 1	
 2	
 4	
 8	
 10	
 12	
 16	
 20	

Re
co
	
 8
m
e	

(s
ec
on

ds
)	

MinBias	

TTBar	

PileUp

Timing based on MC
Track reconstruction accounts
for ~ 40-50% total CPU time
Next to leading contributors:
Particle Flow, conversions, Muon ID

33	

CMS-­‐Phase1	
 new	
 Pixels	

11/04/2013	
 AIDA-­‐WP2	
 Mee<ng	
 -­‐	
 L.	
 Silvestris	
 34	

µ-­‐twisted	
 cables	

Coling	
 pipes	

modules	

CF-­‐Strips	

displaced	

ladder	

displaced	

ladder	

First	
 Barrel	
 Layer	

16	
 faces	
 version	

Data loss for Upgrade Studies
– Peak	
 luminosity	
 values	

Current Detector Radius
(cm)

% Data loss at
1×1034 @25ns

% Data loss at
2×1034 @25ns

% Data loss at
2×1034 @50ns

BPIX1 4.4 4.0 16 50
BPIX2 7.3 1.5 5.8 18.2
BPIX3 10.2 0.7 3.0 9.3

FPIX1&2 0.7 3.0 9.3

Phase 1 Detector Radius
(cm)

% Data loss at
1×1034 @25ns

% Data loss at
2×1034 @25ns

% Data loss at
2×1034 @50ns

BPIX1 3.0 1.19 2.38 4.76
BPIX2 6.8 0.23 0.46 0.93
BPIX3 10.9 0.09 0.18 0.36
BPIX4 16.0 0.04 0.08 0.17

FPIX1-3 0.09 0.18 0.36
35	

Pixel Upgrade Material Budget
Reduced	
 material	
 even	
 with	
 more	
 layers	

“Volumes” Mass (g)
Current Design Upgrade

BPIX η<2.16 16801 6618
FPIX η<2.50 8582 7024

eta
-3 -2 -1 0 1 2 3

ra
dl

en

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Current Pixel Detector Upgrade Pixel Detector

Pixels

eta
-3 -2 -1 0 1 2 3

nu
cl

en

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Current Pixel Detector Upgrade Pixel Detector
PixelsRad.	
 Len.	
 Nucl.	
 Int.	
 Len.	

Dots – Upgrade

Green – Curr geom

Pixels Pixels

Grindelwald,	
 29/08/12	
 Pixel	
 Upgrade	
 Mee<ng	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Alessia	
 Tricomi	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 36	

50%	
 less	
 photon	

conversion	
 in/
before	
 pixel	
 at	

eta	
 1.5	

Impact Parameter Resolutions
•  Transverse:	
 muon	
 sample	
 (10	
 muons/event),	
 <PU>=50	

–  Generated	
 flat	
 in	
 E	
 and	
 eta	
 (plot	
 vs	
 absolute	
 p	
 and	
 in	
 4	
 eta	

regions)	

–  Compare	
 current	
 and	
 upgrade	
 detectors	

p [GeV/c]1 10 210

)[c
m

]
xydδ(

σ

0

0.002

0.004

0.006

0.008

0.01
 < 1.0 FullSimη0.0 <

Current Detector - PU50 with loss
Upgrade Detector - PU50 with loss

p [GeV]1 10 210

 R
at

io

0.8
1

1.2
1.4
1.6 p [GeV/c]1 10 210

)[c
m

]
xydδ(

σ

0

0.005

0.01

0.015

0.02
 < 1.5 FullSimη1.0 <

Current Detector - PU50 with loss
Upgrade Detector - PU50 with loss

p [GeV]1 10 210

 R
at

io

1
1.5

2

p [GeV/c]1 10 210

)[c
m

]
xydδ(

σ

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035
0.04

 < 2.0 FullSimη1.5 <
Current Detector - PU50 with loss
Upgrade Detector - PU50 with loss

p [GeV]1 10 210

 R
at

io

1
1.5

2
p [GeV/c]1 10 210

)[c
m

]
xydδ(

σ

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

 < 2.5 FullSimη2.0 <
Current Detector - PU50 with loss
Upgrade Detector - PU50 with loss

p [GeV]1 10 210

 R
at

io

1
1.5

2

37	

38	

Fall 2011 campaign: from CMSSW42x to 44x (2)
Copy-­‐less	
 hit	
 masking	
 Each	
 step	
 of	
 the	
 itera<ve	
 tracking	
 works	
 on	
 the	
 hits	
 not	

yet	
 associated	
 to	
 any	
 track.	
 This	
 was	
 done	
 by	
 crea<ng	
 a	
 new	
 collec<on	
 of	

surviving	
 hits	
 at	
 each	
 step.	
 Implemented	
 a	
 data	
 member	
 to	
 store	
 masking	
 bits	
 	

Batch	
 cleaning	
 of	
 seeds	
 successfully	
 propagated	
 (track	
 candidates)	
 The	
 track	

candidates	
 are	
 filtered	
 in	
 1k	
 batches	
 to	
 avoid	
 storing	
 too	
 many	
 of	
 them	

Efficient	
 quality	
 assignment	
 Each	
 itera<ve	
 step	
 assigns	
 tracks	
 to	
 a	
 quality	
 <er.	

Old	
 implementa<on	
 just	
 created	
 a	
 track	
 copy	
 per	
 each	
 <er;	
 implemented	
 a	
 data	

member	
 to	
 store	
 the	
 quality	
 <er	
 bits	

Efficient	
 track	
 merging	
 The	
 track	
 collec<ons	
 resul<ng	
 from	
 steps	
 have	
 to	
 be	

merged	
 and	
 cleaned.	
 The	
 merging	
 algorithm	
 has	
 been	
 improved	
 by	
 ge�ng	
 rid	

of	
 intermediate	
 collec<ons.	

implementation and do not change the physics outcome of the tracking reconstruction workflow.
They are mainly targeted to reduction and better handling of the memory and in fact they allow
for a 40% cut of the memory budget. These modifications are described below in more detail.

Copy-less hit masking within the iterative tracking. Each step of the iterative tracking,
but the first, works on the hits not yet associated to any track. Technically this was
implemented by creating a new collection of surviving hits at each step. To save memory,
a masking algorithm has been implemented adding to the hit object an appropriate data
member for the masking bits. Results are unchanged with a major reduction of the allocated
memory.

Batch cleaning of track candidates. The track candidate results from a seed that has been
successfully propagated. Before being declared as a reconstructed track, the track candidate
must undergo a filtering selection to reject fakes. To avoid storing too much track candidates
in memory, the cleaning procedure is done once a subsample of 1000 track candidates has
been accumulated with large benefit on the overall required memory.

E�cient quality assignment. Each step in the iterative tracking assigns tracks to a quality
tier. Old implementation of the algorithm just created a copy of the same track per each
quality tier it was belonging to; this has been modified by removing the copying and adding
an appropriate data member to store the quality tier bits with an obvious advantage on the
memory consumption.

E�cient track merging. After all iterative steps, the resulting track collections have to be
merged and further cleaned from potential fake tracks and duplicated tracks. In fact, only
hits associated to tracks with highest quality, know in CMS as high purity tracks, are not
used in the following steps. But hits associated to lower quality tracks are retained, in the
attempt to build better tracks out of them with di↵erent seed and propagation parameters.
The old implementation of the merging algorithm compared the collection created by the
various steps in pairs creating intermediate collections to be further compared with other
collections up to the end of the process. In the updated version all track collections feed a
merging module that works without creating any intermediate collection. This is pictorially
shown in figure 4.

The second group of ameliorations directly a↵ects the algorithms and thus the outcome
on observables and has to be evaluated also with respect to performances on physics. These
modifications target the CMSSW modules related to tracking that are dominating, in terms of
CPU time, the entire reconstruction chain and are described in the following.

Figure 4. Schematical representation of the old (left) and the new (right) merging algorithm for
an hypothetical iterative tracking with five steps; “intermediate” track collections are avoided
in the new algorithm and this allows for consistent memory savings.

39	

Fall 2011 campaign: from CMSSW42x to 44x (3)
Par8cle	
 flow	
 links	
 The	
 PF	
 algorithm	
 links	
 tracks	
 to	
 calorimetric	
 clusters	
 in	
 the	

(η,φ)	
 space.	
 Done	
 in	
 42x	
 by	
 CPU	
 intensive	
 nested	
 loops,	
 with	
 a	
 complexity	
 that	

scales	
 quadra<cally	
 with	
 the	
 mul<plicity	
 N.	
 In	
 44x	
 implemented	
 a	
 kd-­‐tree	
 based	

algorithm:	
 the	
 (η,φ)	
 space	
 is	
 split	
 into	
 appropriate	
 domains,	
 each	
 containing	

one	
 single	
 object,	
 organized	
 in	
 a	
 tree.	
 The	
 cluster	
 closest	
 to	
 a	
 given	
 track	
 is	

found	
 with	
 a	
 very	
 fast	
 binary	
 search	
 that	
 ends	
 up	
 in	
 the	
 closest	
 neighbor	

domain.	
 The	
 complexity	
 that	
 scales	
 as	
 N·∙logN.	
 Already	
 extended	
 to	
 other	

CMSSW	
 modules	
 by	
 the	
 implementa<on	
 of	
 a	
 generic	
 kd-­‐tree	
 class.	

	

Figure 5. Pictorial representation of the kd-tree algorithm in the case of a very simple neighbor
search problem in the (⌘,�) plane: a track (represented by the “⇥” symbol) needs to be
associated to one of the calorimetric clusters represented by the dots labelled with letters. On
the left panel it is shown the way (⌘,�) is split into domains and the resulting navigation tree
is sketched on the right.

the hadronic energy fraction in jets within the Particle Flow, the global event
reconstruction [7][8], that consists in reconstructing and identifying each single particle
with an optimized combination of all subdetector information. To avoid consuming CPU
time in the heavy vertex fit with candidates that are very likely to be fakes, a very simple
preselection has been implemented: a nuclear interaction candidate track is kept only if PT

exceeds 800MeV/c, in case of primary tracks, or if the impact parameter in the xy plane
is larger then 2mm for secondary tracks; the vertex candidate must have at least three
tracks (one primary and two secondaries or three secondaries) and, finally, candidates are
discarded if the secondary vertex estimate falls within the beam pipe. These simple criteria
are enough to reduce the combinatorics such that the nuclear interaction reconstruction
gains a factor 5 in CPU time with no observable degradation in physics performances.

Particle flow links. The Particle Flow algorithm needs to link tracks to calorimetric clusters
in the (⌘,�) parameter space. This problem of nearest neighbor search over a large number
of objects in CMSSW 4.2.x is implemented with nested loops and results to be rather time
intensive. Moreover the complexity scales quadratically (N2) as the object multiplicity N

increases. In CMSSW 4.4.x the well known linearization technique known as kd-tree [9] has
been introduced to replace nested loops. The method consists in an algorithm that, starting
from a collection of objects (calorimetric cluster, for example), dynamically splits the (⌘,�)

Figure 6. Breakdown of the
average CPU time per event in
arbitrary units before and after ‘Fall
2011’ for each improvement area of
the tracking reconstruction software
(simulated QCD events with 30 pile-
up interactions).

40	

Parallelization within the modules
Iden<fy	
 modules	
 that	
 perform	
 tasks	
 where	
 paralleliza<on	
 can	
 be	

easily	
 implemented;	
 tracking	
 is	
 a	
 clear	
 candidate,	
 i.e.	
 track	
 building	

aTer	
 seeding	
 (paqern	
 recogni<on)	
 within	
 an	
 itera<ve	
 step	

Made	
 the	
 algorithms	
 thread	
 safe	
 (could	
 not	
 be	
 trivial	
 in	
 case	
 of	

tracking)	
 CAVEAT:	
 going	
 thread	
 safe	
 could	
 result	
 in	
 significant	
 memory	

overhead...	

#1
#2

#3

#4

...parallel

41	

Hough transform basics
Each	
 hit	
 is	
 compa<ble	
 to	
 many	
 trajectory	
 hypotheses	
 that	
 can	
 be	
 represented	

by	
 curves	
 in	
 an	
 appropriate	
 trajectory	
 parameter	
 space	
 (typically	
 straight	
 lines);	

the	
 intersec<on	
 between	
 many	
 of	
 these	
 curves	
 is	
 a	
 reconstructed	
 track.	
 So	
 hits	

are	
 transformed	
 into	
 lines	
 (or	
 curves,	
 more	
 in	
 general)	
 in	
 the	
 track	
 parameter	

space	
 by	
 an	
 appropriate	
 conformal	
 transforma<on,	
 and	
 accumula<on	
 points	

are	
 iden<fied.	

ATRACK

BTRACK

histogramming
method to find the
accumulation point

y=Ax+B ⇒ B=-xA+y
for each (X,Y) draw B=-XA
+Y in the (A,B) space

