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Aida WP2 – INFN contribution 

•  Our	
  contribu<on	
  to	
  WP2:	
  	
  
–  Development	
  of	
  a	
  toolkit	
  to	
  handle	
  high	
  mul<plicity	
  events	
  
	
  	
  

•  Pile	
  up	
  in	
  SLHC	
  will	
  increase	
  with	
  respect	
  to	
  “nominal	
  
(2011)”	
  LHC	
  à	
  more	
  efficient	
  way	
  needed	
  to	
  
manage	
  high	
  par<cle	
  mu<plicity	
  events	
  

– Working	
  on	
  improving	
  CMS	
  Mixing	
  Module	
  and	
  Tracking	
  	
  
soTware	
  for	
  post-­‐long	
  shoutdown	
  1	
  (2015)	
  and	
  Tracker	
  
Phase	
  1	
  upgrade	
  (2017)	
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Outline 

•  A	
  glimpse	
  of	
  the	
  CMS	
  Processing	
  Model	
  
•  Mixing	
  Module	
  improvements	
  from	
  2011	
  to	
  2013	
  
•  A	
  glimpse	
  on	
  the	
  CMS	
  Tracking	
  implementa<on	
  
•  The	
  tracking	
  evolu<on	
  from	
  2011	
  to	
  2012	
  
•  The	
  challenge	
  of	
  2015	
  data	
  taking	
  
•  Raw	
  ideas	
  for	
  new	
  tracking	
  algorithms	
  

•  For	
  help	
  and	
  material,	
  many	
  thanks	
  to	
  several	
  Tracking	
  group,	
  
Offline	
  and	
  PPD	
  team	
  people	
  (CMS	
  Collabora<on)	
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CMS: Processing Model  

Modules are configurable and communicate via the Event 

https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookCMSSWFramework 
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Software Components in MC Production 

•  Workflows	
  for	
  MC	
  produc<on	
  in	
  CMS	
  include	
  the	
  following	
  
components;	
  

–  Event	
  Genera<on	
  
–  Full	
  Detector	
  simula<on:	
  SimHits	
  produc<on	
  using	
  Geant4	
  
–  Mixing	
  Module:	
  soTware	
  for	
  superimposing	
  secondary	
  pile-­‐up	
  (in	
  <me	
  

and	
  out	
  of	
  <me)	
  events	
  to	
  a	
  signal	
  event	
  
–  Digi<za<on:	
  soTware	
  for	
  modelling	
  electronics	
  response	
  in	
  the	
  

different	
  detectors	
  
–  Detector	
  reconstruc<on	
  (	
  Tracks,	
  ECAL	
  Reco,	
  …)	
  

•  Increasing	
  the	
  number	
  of	
  pile-­‐up	
  events:	
  Mixing	
  Module	
  and	
  
Reconstruc<on	
  code	
  (mainly	
  tracking	
  code)	
  need	
  to	
  be	
  
op<mized	
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Mixing Module Improvements from 2011 to 2013  

•  Mixing	
  module	
  superimpose	
  pileup	
  events	
  to	
  a	
  signal	
  event	
  
•  2011	
  implementa<on:	
  

–  copies	
  the	
  signal	
  data	
  into	
  the	
  CrossingFrame	
  at	
  bunchcrossing	
  0	
  
–  Loop	
  over	
  all	
  bunch-­‐crossing	
  (depending	
  from	
  the	
  configura<on)	
  
–  For	
  each	
  bunch-­‐crossing	
  it	
  decides	
  which	
  number	
  of	
  events	
  and	
  from	
  

which	
  source	
  should	
  be	
  added	
  
–  For	
  each	
  bunch-­‐crossing	
  and	
  for	
  each	
  type	
  of	
  data	
  (PSimHits,	
  

PCaloHits,..)	
  it	
  adds	
  the	
  corresponding	
  objects	
  from	
  the	
  read	
  event	
  
into	
  a	
  secondary	
  (in	
  memory)	
  stream	
  (Crossing	
  Frame)	
  	
  

–  The	
  Crossing	
  Frame	
  is	
  then	
  used	
  during	
  the	
  digi<za<on	
  step,	
  i.e.	
  
during	
  next	
  step	
  in	
  the	
  MC	
  Produc<on	
  

•  Major	
  drawback:	
  memory	
  increase	
  linearly	
  with	
  the	
  number	
  
of	
  pile-­‐up	
  events	
  up	
  to	
  2GB/core	
  with	
  100	
  pile-­‐up	
  events	
  and	
  
3	
  bunch-­‐crossing	
  (300	
  events)	
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Mixing Module Improvements from 2011 to 2013  
•  Memory	
  Improvements:	
  

–  The	
  current	
  implementa<on	
  has	
  changed	
  the	
  MC	
  produc<on	
  workflow	
  
–  The	
  mixing	
  module	
  and	
  the	
  digi<za<on	
  step	
  are	
  done	
  in	
  series	
  	
  
–  In	
  this	
  way	
  we	
  don’t	
  need	
  to	
  keep	
  in	
  memory	
  the	
  secondary	
  stream	
  

(CrossingFrame)	
  
–  Applying	
  such	
  trick	
  we	
  keep	
  the	
  memory	
  under	
  2	
  GB/core	
  with	
  140	
  pile-­‐up	
  

events	
  and	
  5	
  bunch	
  crossing	
  (700	
  events),	
  i.e.	
  future	
  LHC	
  configura<ons	
  

•  CPU	
  improvements	
  (addi<onal	
  improvements):	
  
–  Now	
  we	
  are	
  moving	
  to	
  study	
  the	
  CPU	
  effects.	
  Up	
  to	
  now	
  the	
  digi<za<on	
  <me	
  has	
  

been	
  negligible	
  respect	
  to	
  simula<on	
  and	
  mixing	
  <me,	
  but	
  this	
  will	
  change	
  
soon…	
  

•  PU	
  140	
  BX	
  5	
  (25ns):	
  700	
  event	
  to	
  mix	
  à	
  RSS	
  1.7	
  GB	
  CPU	
  59	
  sec	
  
•  PU	
  40	
  BX	
  15	
  (25ns):	
  600	
  events	
  to	
  mix	
  à	
  RSS	
  1.5	
  GB	
  CPU	
  27	
  sec	
  (worse	
  by	
  factor	
  3	
  for	
  phase1)	
  
•  PU	
  20	
  BX	
  15	
  (25ns):	
  300	
  events	
  to	
  mix	
  à	
  RSS	
  1.2	
  GB	
  CPU	
  12	
  sec	
  	
  

•  Summer	
  12	
  MC	
  Prod	
  à	
  	
  1	
  GB	
  CPU	
  5	
  sec	
  
–  These	
  results	
  are	
  very	
  very	
  preliminary	
  and	
  most	
  probably	
  will	
  bring	
  addi<onal	
  

changes	
  in	
  the	
  MC	
  produc<on	
  workflow;	
  Keep	
  tuned	
  for	
  next	
  <me.	
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The largest Silicon Tracker 
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Pixel	
  Detector	
  
66M	
  channels	
  
100x150	
  μm2	
  pixel	
  
LHC	
  radia<on	
  resistant	
  

Si-­‐Strip	
  detector	
  
~23m3;	
  ~200m2	
  of	
  Si	
  area;	
  
~9x106	
  channels;	
  
LHC	
  radia<on	
  resistant	
  

TIB 
Inner Barrel 
4 layers TID 

Inner Disks 
3+3 disks 

TEC Endcap 
9+9 disks 

Tracker 
Support 
Tube 

TOB 
Outer Barrel 
6 layers 

L~5.4m 
∅~2.4m 

PXL 
Pixel Detector 
3 layers, 2+2 disks 
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The CMS Silicon Tracker Layout 
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CMS tracking in a nutshell 
Seeding	
  starts	
  from	
  innermost	
  pixel	
  
layers	
  (pairs	
  +	
  PV,	
  triplets).	
  Inside-­‐out	
  
trajectory	
  building	
  through	
  paqern	
  
recogni<on	
  (based	
  on	
  Kalman	
  Filter).	
  

Track	
  Parameters:	
  q/p,	
  η,	
  φ,	
  dZ,	
  dXY	
  
Parameters	
  propagated	
  through	
  magne<c	
  field	
  	
  
inhomogenei<es	
  using	
  Runge-­‐Ku5a	
  propagator	
  

✘✘ ✔ x 

Rejec<on	
  of	
  outlier	
  hits	
  and	
  final	
  fit,	
  also	
  
based	
  on	
  Kalman	
  Filter.	
  Final	
  quality	
  
selec<on	
  of	
  tracks.	
  Primary	
  Vertex	
  used	
  
in	
  tracking	
  derived	
  from	
  pixel-­‐based	
  
algorithm.	
  



Iterative tracking. A factor 2.5 of improvement in the CPU time has been obtained by
optimizing the iterative tracking, as detailed in table 2 to be compared with table 1 that
summarizes the baseline configuration of CMSSW 4.2.x. As can be seen, the net e↵ect
is an increase of the e↵ective PT threshold for track reconstruction together with tighter
constraint on impact parameter. This configuration results into a reduced e�ciency for PT

lower than 300MeV/c but an e�ciency for PT greater than 0.9GeV/c larger by ⇠ 1% with
a ⇠ 8% reduction of the fake rate.

Reconstruction of photon conversions. Reconstruction of photon conversion in the tracker
volume is heavily a↵ected by the higher PT threshold and by the tighter impact parameter
cuts since conversion tracks are typically soft and displaced. To recover this loss, a
dedicated seeding has been deployed [6] and the photon conversion reconstruction has been
further optimized resulting in a factor 12 improvement of the CPU time for conversion
reconstruction.

Reconstruction of primary vertices. The reconstruction of primary vertices in the event
has been optimized by integrating into the same module all the di↵erent reconstruction
methods; the removal of the overhead due to the module split we had beforehand was
enough to gain a factor two in CPU time in this specific context.

Reconstruction of nuclear interactions. Similarly to photon conversions, also nuclear
interactions are reconstructed for tracker material studies and to correctly estimate

Table 1. Relevant parameters of the six iterative tracking steps in CMSSW 4.2.x, i.e. before
the reconstruction improvement campaign described in this paper; � represents the beam spot
size along the z axis and d0 and z0 are the transverse (i.e. in the xy plane) and longitudinal
impact parameters, respectively.

#step seed type seed subdetectors P

min
T [ GeV/c] d0 cut z0 cut

0 triplet pixel 0.8 0.2 cm 3.0�
1 pair pixel/TEC 0.6 0.05 cm 0.6 cm
2 triplet pixel 0.075 0.2 cm 3.3�
3 triplet pixel/TIB/TID/TEC 0.25-0.35 2.0 cm 10.0 cm
4 pair TIB/TID/TEC 0.5 2.0 cm 12.0 cm
5 pair TOB/TEC 0.6 6.0 cm 30.0 cm

Table 2. Relevant parameters of the seven tracking iterative steps in CMSSW 4.4.x, after the
first phase of the improvement campaign in fall 2011; in bold the parameters changed with
respect to the corresponding steps in CMSSW 4.2.x (see table 1); step #1 is brand new with
respect to CMSSW 4.2.x; see table 1 caption for symbol definitions.

#step seed type seed subdetectors P

min
T [ GeV/c] d0 cut z0 cut

0 triplet pixel 0.6 0.03 cm 4.0�
1 triplet pixel 0.2 0.03 cm 4.0�
2 pair pixel 0.6 0.01 cm 0.09 cm
3 triplet pixel 0.2 1.0 cm 4.0�
4 triplet pixel/TIB/TID/TEC 0.35-0.5 2.0 cm 10.0 cm
5 pair TIB/TID/TEC 0.6 2.0 cm 10.0 cm
6 pair TOB/TEC 0.6 2.0 cm 30.0 cm

11	
  

Itera<ve	
  tracking	
  

The	
  CMS	
  tracking	
  relies	
  on	
  itera<ons	
  (steps)	
  of	
  the	
  tracking	
  procedure;	
  each	
  step	
  
works	
  on	
  the	
  remaining	
  not-­‐yet-­‐associated	
  hits	
  and	
  is	
  op<mized	
  with	
  respect	
  to	
  
the	
  seeding	
  topology	
  and	
  to	
  the	
  final	
  quality	
  cuts.	
  

Iterative tracking in 2011 (CMSSW 42x) 
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Tracking evolution from 
from 1032/cm2/s (2011) 

to 8×1033/cm2/s (2012) 
. 
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The constraint of prompt reconstruction 
Prompt	
  reconstruc<on	
  is	
  crucial	
  for	
  a	
  discovery	
  experiment:	
  quasi	
  real-­‐<me	
  
physics	
  results,	
  fast	
  deep	
  feedback	
  on	
  detector	
  condi<ons.	
  It	
  requires	
  data	
  
to	
  be	
  processed	
  at	
  the	
  same	
  pace	
  as	
  they	
  are	
  produced.	
  Resources	
  and	
  
algorithm	
  speed	
  must	
  adapt	
  to	
  the	
  instantaneous	
  luminosity.	
  The	
  tracking	
  
reconstruc<on	
  soTware	
  was	
  too	
  heavy	
  (CPU	
  <me	
  and	
  memory)	
  for	
  prompt	
  
reconstruc<on	
  and	
  it	
  was	
  improved	
  in	
  two	
  phases:	
  fall	
  2011,	
  spring	
  2012.	
  

20
15

 e
st

im
at

es
 20 



14	
  

Fall 2011 campaign: from CMSSW42x to 44x (1) 
Several	
  op8miza8on	
  in	
  object	
  reconstruc8on	
  like	
  photon	
  conversion,	
  ver<ces,	
  
nuclear	
  interac<ons	
  with	
  significant	
  CPU	
  <me	
  gain	
  
Itera8ve	
  tracking	
  A	
  factor	
  2.5	
  of	
  improvement	
  in	
  the	
  CPU	
  <me	
  has	
  been	
  
obtained	
  by	
  op<mizing	
  the	
  itera<ve	
  tracking.	
  The	
  net	
  effect	
  is	
  an	
  increase	
  of	
  
the	
  effec<ve	
  PT	
  threshold	
  for	
  track	
  reconstruc<on	
  together	
  with	
  <ghter	
  
constraints	
  on	
  impact	
  parameter.	
  This	
  configura<on	
  results	
  in	
  a	
  reduced	
  
efficiency	
  for	
  PT	
  <300MeV/c	
  but	
  an	
  efficiency	
  for	
  PT>0.9	
  GeV/c	
  larger	
  by	
  ~1%	
  
with	
  a	
  ~8%	
  reduc<on	
  of	
  the	
  fake	
  rate.	
  

Iterative tracking in late 2011 (CMSSW 44x) / In bold the changes with respect to 42x 

Iterative tracking. A factor 2.5 of improvement in the CPU time has been obtained by
optimizing the iterative tracking, as detailed in table 2 to be compared with table 1 that
summarizes the baseline configuration of CMSSW 4.2.x. As can be seen, the net e↵ect
is an increase of the e↵ective PT threshold for track reconstruction together with tighter
constraint on impact parameter. This configuration results into a reduced e�ciency for PT

lower than 300MeV/c but an e�ciency for PT greater than 0.9GeV/c larger by ⇠ 1% with
a ⇠ 8% reduction of the fake rate.

Reconstruction of photon conversions. Reconstruction of photon conversion in the tracker
volume is heavily a↵ected by the higher PT threshold and by the tighter impact parameter
cuts since conversion tracks are typically soft and displaced. To recover this loss, a
dedicated seeding has been deployed [6] and the photon conversion reconstruction has been
further optimized resulting in a factor 12 improvement of the CPU time for conversion
reconstruction.

Reconstruction of primary vertices. The reconstruction of primary vertices in the event
has been optimized by integrating into the same module all the di↵erent reconstruction
methods; the removal of the overhead due to the module split we had beforehand was
enough to gain a factor two in CPU time in this specific context.

Reconstruction of nuclear interactions. Similarly to photon conversions, also nuclear
interactions are reconstructed for tracker material studies and to correctly estimate

Table 1. Relevant parameters of the six iterative tracking steps in CMSSW 4.2.x, i.e. before
the reconstruction improvement campaign described in this paper; � represents the beam spot
size along the z axis and d0 and z0 are the transverse (i.e. in the xy plane) and longitudinal
impact parameters, respectively.

#step seed type seed subdetectors P

min
T [ GeV/c] d0 cut z0 cut

0 triplet pixel 0.8 0.2 cm 3.0�
1 pair pixel/TEC 0.6 0.05 cm 0.6 cm
2 triplet pixel 0.075 0.2 cm 3.3�
3 triplet pixel/TIB/TID/TEC 0.25-0.35 2.0 cm 10.0 cm
4 pair TIB/TID/TEC 0.5 2.0 cm 12.0 cm
5 pair TOB/TEC 0.6 6.0 cm 30.0 cm

Table 2. Relevant parameters of the seven tracking iterative steps in CMSSW 4.4.x, after the
first phase of the improvement campaign in fall 2011; in bold the parameters changed with
respect to the corresponding steps in CMSSW 4.2.x (see table 1); step #1 is brand new with
respect to CMSSW 4.2.x; see table 1 caption for symbol definitions.

#step seed type seed subdetectors P

min
T [ GeV/c] d0 cut z0 cut

0 triplet pixel 0.6 0.03 cm 4.0�
1 triplet pixel 0.2 0.03 cm 4.0�
2 pair pixel 0.6 0.01 cm 0.09 cm
3 triplet pixel 0.2 1.0 cm 4.0�
4 triplet pixel/TIB/TID/TEC 0.35-0.5 2.0 cm 10.0 cm
5 pair TIB/TID/TEC 0.6 2.0 cm 10.0 cm
6 pair TOB/TEC 0.6 2.0 cm 30.0 cm
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Results of fall 2011 campaign 
reconstruc<on	
  CPU	
  <me	
  @30PU	
  |	
  reconstruc<on	
  CPU	
  <me	
  vs.	
  PU	
  

Simulated	
  QCD	
  events	
  

Figure 5. Pictorial representation of the kd-tree algorithm in the case of a very simple neighbor
search problem in the (⌘,�) plane: a track (represented by the “⇥” symbol) needs to be
associated to one of the calorimetric clusters represented by the dots labelled with letters. On
the left panel it is shown the way (⌘,�) is split into domains and the resulting navigation tree
is sketched on the right.

the hadronic energy fraction in jets within the Particle Flow, the global event
reconstruction [7][8], that consists in reconstructing and identifying each single particle
with an optimized combination of all subdetector information. To avoid consuming CPU
time in the heavy vertex fit with candidates that are very likely to be fakes, a very simple
preselection has been implemented: a nuclear interaction candidate track is kept only if PT

exceeds 800MeV/c, in case of primary tracks, or if the impact parameter in the xy plane
is larger then 2mm for secondary tracks; the vertex candidate must have at least three
tracks (one primary and two secondaries or three secondaries) and, finally, candidates are
discarded if the secondary vertex estimate falls within the beam pipe. These simple criteria
are enough to reduce the combinatorics such that the nuclear interaction reconstruction
gains a factor 5 in CPU time with no observable degradation in physics performances.

Particle flow links. The Particle Flow algorithm needs to link tracks to calorimetric clusters
in the (⌘,�) parameter space. This problem of nearest neighbor search over a large number
of objects in CMSSW 4.2.x is implemented with nested loops and results to be rather time
intensive. Moreover the complexity scales quadratically (N2) as the object multiplicity N

increases. In CMSSW 4.4.x the well known linearization technique known as kd-tree [9] has
been introduced to replace nested loops. The method consists in an algorithm that, starting
from a collection of objects (calorimetric cluster, for example), dynamically splits the (⌘,�)

Figure 6. Breakdown of the
average CPU time per event in
arbitrary units before and after ‘Fall
2011’ for each improvement area of
the tracking reconstruction software
(simulated QCD events with 30 pile-
up interactions).

Figure 7. Total reconstruction
CPU time per event (in arbitrary
units) for as a function of pile-up
events for simulated QCD events
for the baseline CMSSW and the
improved version.

space into appropriate domains, each containing one single object, organized in a tree. The
closest cluster to a given track can be found by exploring the (⌘,�) space with a very fast
binary search that ends up in the closest neighbor domain. This algorithm, schematically
represented in figure 5, has a complexity that scales as N · logN , thus more convenient with
respect to standard nested loops especially for large multiplicity, and allows to gain a factor
4 in CPU time in this specific application. Its extension to other modules of CMSSW is
being studied.

The results of the improvements just described are graphically represented in figure 6 and
figure 7. In the former the breakdown of the CPU time for each improvement area before
and after each improvement is reported for simulated QCD events with 30 pile-up interactions
per event; in the latter the total CPU time is shown as a function of the number of pile-up
interactions for simulated QCD events.

The CMSSW 4.4.x releases derived from the “fall 2011” campaign have been fully validated
and have been accepted for production since changes in performaces are minor with respect to
physics outcome.

3. Spring 2012 campaign
The modifications put in place in the second phase of the improvement campaign have been
developed on top of CMSSW version 4.4.x and implemented in the CMSSW version 5.2.x.
Again a group of improvements are based on better coding and technological improvements and
do not change the physics outcome. More in detail, these modifications are described below.

Change of compiler version. The implementation of CMSSW 5.2.x has been accompanied
by the switch from gcc 4.3.4 to gcc 4.6.2 to produce binaries. This latter compiler version
allows for faster code to be generated also thanks to some compiler specific optimizations.
The net gain is up to 10% as shown in figure 8 where the reduction in CPU time is shown as
a function of the number of pile-up vertices for simulated QCD events. Other features that
came along the new compiler version are the C++11 standard support and autovectorization
flags on by default.

JEMalloc. The concurrent malloc implementation JEMalloc, highly performant and able to
better redeem memory, has been implemented in place of the standard malloc.

Switch to improved ROOT version. The ROOT package version has been changed from
5.27 to 5.32 that features several improvements, especially in I/O with less memory required.

Several design modifications to improve speed and memory consumption. The code
has been again carefully reviewed and many improvements have been implemented. Several



of those are related to track reconstruction classes. For example, the devirtualization of the
BasicTrajectoryState class (an ancillary class for track reconstruction) resulted into a 10%
gain in speed and in some 100MB of resident set size (RSS) saved per event. Similarly the
stereo hit class (the class that stores the double sided module hits) has been considerably
slimmed down (a factor three in size) with a net decrease of RSS memory from 50MB to
150MB, depending on the event occupancy.

Another set of modifications directly a↵ects the outcome on physics output. These are
described in the following.

O✏ine vertexing. The o✏ine reconstruction of primary vertices is based on a deterministic
annealing algorithm to find the z coordinate of the vertices. Major improvements have been
deployed for CMSSW 5.2.x: loops have been autovectorized (thanks to the introduction of
the new compiler) but, to further profit of autovectorization capabilities, the exponential
functions heavily used in the algorithm have been replaced with a fast, autovectorizable
inlined double precision version. Eventually the deterministic annealing algorithm has been
further made more e�cient by optimizing some configuration parameters with essentially
no change in physics performances. The net increase in CPU time amounts to a factor 3
for large PU events.

Cluster shape based seed filtering The large CPU time needed by the track reconstruction
is to be ascribed to the huge number of seeds due to hit combinatorics; in fact a propagation
has to be attempted for each of them. A way to keep this number under control is to
implement filters able to reject fake seeds. One of the most e↵ective is based on the cluster
shape. For example a track impinging a sensor with a large angle will generate a cluster
wider than a track with normal incidence. This can be used to evaluate seed compatibility
with the track hypothesis. Such a filter was used only in steps #0 and #1 in CMSSW 4.4.x
(see table 2); for CMSSW 5.2.x it has been extended also to steps #2, #4 and #5 (see
table 3) with a substantial CPU time benefit. For example, the step #2, particularly prone
to combinatorics since seeds are made up of hit pairs, sees a CPU time reduction of a factor
2.7. Overall the improvement in CPU time is of a factor 1.5. As a side e↵ect of the filter
also the fake rate is reduced by ⇠ 20%.

Iterative tracking. After all the modifications described above, also the iterative tracking
has been further optimized for CMSSW 5.2.x. Nevertheless the di↵erences, summarized
in table 3, are tiny, which demonstrates that upstream improvements are already almost
su�cient to make CMSSW compliant with requirements. There is no need to modify
deeply the iterative tracking, i.e. to reduce combinatorics and to match performance target
by increasing e↵ective PT thresholds and/or by reducing e�ciency for displaced tracks. A
relevant change introduced as part of the optimization consist of the upgrade of the final

Figure 8. Relative CPU time re-
duction to be ascribed to the intro-
duction of gcc 4.6.2 as a function of
the number of PU vertices for simu-
lated QCD events.
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Spring 2012 campaign: from CMSSW44x to 52x (1) 

Change	
  of	
  compiler	
  switch	
  from	
  gcc	
  
4.3.4	
  to	
  gcc	
  4.6.2:	
  faster	
  code	
  
generated	
  (compiler	
  specific	
  
op<miza<ons),	
  C++11	
  support	
  and	
  
autovectoriza<on	
  
JEMalloc	
  standard	
  malloc	
  replaced	
  
by	
  JEMalloc,	
  highly	
  performant	
  and	
  
able	
  to	
  beqer	
  redeem	
  memory	
  
Improved	
  ROOT	
  version	
  from	
  5.27	
  
to	
  5.32	
  that	
  features	
  several	
  
improvements,	
  especially	
  in	
  I/O	
  
with	
  less	
  memory	
  required.	
  

Relative change of CPU reconstruction 
time vs. PU Simulated QCD events


Several	
  design	
  modifica8ons	
  to	
  improve	
  speed	
  and	
  memory	
  consump<on;	
  for	
  	
  
example,	
  10%	
  gain	
  in	
  speed	
  and	
  in	
  some	
  100MB	
  of	
  resident	
  set	
  size	
  (RSS)	
  saved	
  per	
  
event	
  	
  from	
  the	
  devirtualiza<on	
  of	
  the	
  BasicTrajectoryState	
  class	
  (an	
  ancillary	
  class	
  
for	
  track	
  reconstruc<on);	
  stereo	
  hit	
  class	
  reduced	
  a	
  factor	
  three	
  in	
  size	
  with	
  RSS	
  
memory	
  down	
  to	
  	
  50MB	
  from	
  150MB	
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Spring 2012 campaign: from CMSSW44x to 52x (2) 
Offline	
  vertexing	
  based	
  on	
  a	
  determinis<c	
  annealing	
  algorithm	
  improved:	
  loops	
  
autovectorized	
  (new	
  compiler),	
  exponen<al	
  func<ons	
  replaced	
  with	
  fast	
  
autovectorizable	
  inlined	
  double	
  precision	
  versions;	
  some	
  configura<on	
  
parameters	
  op<mized.	
  3x	
  gain	
  in	
  CPU	
  <me	
  with	
  no	
  change	
  in	
  performances	
  
Cluster-­‐shape	
  based	
  seed	
  filtering	
  extended	
  to	
  almost	
  all	
  seeding	
  step.	
  1.5x	
  	
  
improvement	
  in	
  CPU	
  <me.	
  Fake	
  rate	
  is	
  reduced	
  by	
  ∼	
  20%.	
  Itera<ve	
  tracking	
  Tiny	
  
op<miza<on	
  plus	
  upgrade	
  of	
  the	
  final	
  track	
  cleaning	
  and	
  selec<on	
  criteria.	
  No	
  
efficiency	
  change	
  for	
  prompts	
  tracks	
  with	
  PT>0.9	
  GeV/c,	
  but	
  fake	
  rate	
  ∼35%	
  
down.	
  

Iterative tracking in 2012 (CMSSW 52x) / In bold the changes with respect to 44x 

Table 3. Relevant parameters of the seven tracking iterative steps in CMSSW 5.2.x, after
the second phase of the improvement campaign in 2012; in bold the parameters changed with
respect to the corresponding steps of CMSSW 4.4.x in table 2; see table 1 caption for symbol
definitions.

#step seed type seed subdetectors P

min
T [ GeV/c] d0 cut z0 cut

0 triplet pixel 0.6 0.02 cm 4.0�
1 triplet pixel 0.2 0.02 cm 4.0�
2 pair pixel 0.6 0.015 cm 0.09 cm
3 triplet pixel 0.3 1.5 cm 2.5�
4 triplet pixel/TIB/TID/TEC 0.5-0.6 1.5 cm 10.0 cm
5 pair TIB/TID/TEC 0.6 2.0 cm 10.0 cm
6 pair TOB/TEC 0.6 2.0 cm 30.0 cm

track cleaning and selection criteria. Eventually the e�ciency for prompts tracks with PT

larger than 0.9GeV/c is not a↵ected but the fake rate is reduced by about ⇠ 35%.

The overall result obtained with the “spring 2012” campaign improvements implemented in
CMSSW 5.2.x is shown in figure 9 where the dependence of RSS memory as a function of running
time is plotted in CMSSW 4.4.x and CMSSW 5.2.x for a reconstruction job of 100 real data
events from the 2011 special run with high PU. The substantial reduction both in memory load
as well as in total running time is clearly evident.

The CMSSW 5.2.x releases have been fully validated and have been accepted for production
since changes in performaces are minor with respect to physics outcome.

4. A glimpse into the future
The challenge for the CMS reconstruction cannot be considered over with the deployment of
the software for 2012 data taking, currently ongoing. After the first long shutdown, foreseen for
almost two years in 2013 and 2014, LHC will increase center-of-mass energy and instantaneous
luminosity as well. This will require a major reengineering of the entire reconstruction software
and of the tracking.

Figure 9. RSS memory as
a function of running time in
CMSSW 4.4.x and CMSSW 5.2.x
for a reconstruction job of 100 real
data events from the 2011 special
run with high PU.



18	
  

Effects of CPU and memory improvements 
Many	
  improvements	
  over	
  past	
  2	
  years	
  have	
  yielded	
  substan<al	
  saving	
  in	
  CPU	
  
and	
  memory	
  use.	
  
But	
  CPU	
  <me	
  s<ll	
  shows	
  significa<on	
  non-­‐lineari<es	
  with	
  pile-­‐up	
  
Results	
  for	
  track	
  reconstruc<on	
  only;	
  data	
  results	
  from	
  2011	
  high	
  pile-­‐up	
  run	
  
with	
  ~	
  35	
  pile-­‐up	
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The challenge of 2015 data taking 
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2015:	
  Scary	
  PU	
  scenarios...	
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Strategies for 2015 and Phase 1 
Generic	
  improvements	
  as	
  in	
  2011/2012	
  (smarter	
  coding,	
  
compilers,	
  seed	
  cleaning)	
  and	
  itera<ve	
  tracking	
  tuning	
  |	
  tracking	
  
developers	
  
Tracking	
  code	
  reengineering;	
  major	
  redesign	
  of	
  the	
  tracking	
  code	
  
to	
  implement	
  paralleliza<on	
  and	
  vectoriza<on	
  between	
  offline	
  
people	
  for	
  the	
  framework	
  (modifica<ons	
  almost	
  transparent	
  for	
  
the	
  user)	
  and	
  tracking	
  developers	
  (for	
  modifica<ons	
  to	
  be	
  
implemented	
  straight	
  into	
  the	
  tracking	
  code)	
  
	
  
New	
  tracking	
  algorithms	
  (Hough	
  transform)	
  
	
  
Developments	
  to	
  be	
  done	
  during	
  LS1	
  but	
  mainly	
  in	
  2013,	
  with	
  
2014	
  devoted	
  to	
  full	
  valida<on	
  and	
  MC	
  produc<ons	
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Proposal for Hough transform applications in CMS 
Hough	
  transform	
  methods	
  cannot	
  handle	
  energy	
  
loss	
  and	
  mul<ple	
  scaqering;	
  they	
  are	
  probably	
  not	
  
suitable	
  for	
  full	
  track	
  reconstruc<on	
  in	
  CMS	
  (where	
  
material	
  effects	
  are	
  substan<al).	
  
Nevertheless,	
  Hough	
  transform	
  could	
  represent	
  a	
  
natural	
  way	
  to	
  combine	
  more	
  informa<on	
  than	
  just	
  
two/three	
  hits	
  at	
  the	
  seeding	
  level	
  in	
  a	
  fast	
  way	
  and	
  
without	
  entering	
  in	
  the	
  <me	
  consuming	
  
propaga<on.	
  Given	
  the	
  reduced	
  lever	
  arm	
  and	
  the	
  
reduced	
  resolu<on	
  needed,	
  material	
  effects	
  can	
  be	
  
probably	
  neglected	
  at	
  the	
  seeding	
  level.	
  
Proposal	
  for	
  Hough	
  transform	
  method	
  
implementa<on:	
  
=	
  seeding	
  in	
  the	
  outer	
  tracker	
  layers	
  combining	
  
informa<on	
  from	
  more	
  than	
  three	
  layers;	
  
=	
  4-­‐layer	
  seeding	
  for	
  the	
  phase-­‐I	
  upgraded	
  pixel	
  
detector.	
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Pixel Phase 1 Upgrade 



CMS Pixel @ Phase I 
Current pixel system: 
3 barrel layers 
2 endcap disks Current system designed to withstand L ∼200-300 fb-1 

Significant radiation damage @ L>1034cm-2s-1 
1st layer - 16% inefficient @ 2x1034cm-2s-1 

Add 4th layer 
r = 39, 68, 109 & 160 mm 
Add 3rd disc 
Aggressive material reduction 

Module 
Thinner sensor 
   285µm to 225µm 
Thinner ROC 
   175µm to 75µm 
No HV capacitor 
Minimise SMD components 
Micro-twisted pair 
No base strips 
ONE TYPE ONLY 

11/04/2013	
   AIDA-­‐WP2	
  Mee<ng	
  -­‐	
  L.	
  Silvestris	
  



Upgrade Iterative Tracking (Stdgeom) 
•  5_2_0	
  tracking	
  for	
  current	
  pixel	
  geometry	
  (from	
  “2012	
  tune”)	
  

–  Close	
  to	
  5_2_0	
  tracking,	
  use	
  steps	
  0-­‐2,	
  and	
  4A	
  (for	
  high	
  eta)	
  
–  Reduce	
  step	
  4A	
  d0	
  cut	
  to	
  reduce	
  CPU	
  and	
  memory	
  usage	
  

Iteration Seeds pT cut 
(GeV) 

d0 cut 
(cm) 

dz cut 
(cm) 

Min 
hits 

0 pixel triplets 0.6 0.02 4.0σbs 3 
1 low pT pixel triplets 0.2 0.02 4.0σbs 3 
2 pixel pairs with vtx 0.6 0.015 4.0σbs 3 
3  detached triplets 0.3 1.5 15.0 3 

4A pixel +(TEC(1 ring)) 
triplets 

0.4 0.02 10.0 3 

4B BPIX+TIB triplets 0.6 1.5 10.0 3 
5 TIB, TID, TEC pairs 

(fewer) 
0.7 2.0 10.0 4 

6 TOB, TEC pairs 0.6 6.0 30.0 6 

Release	
  CMSSW_4_2_8_SLHCstd2_patch1	
  Tracking	
  steps	
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Upgrade Iterative Tracking (Phase 1) 
•  5_2_0	
  tracking	
  for	
  Phase	
  1	
  geometry	
  (not	
  op<mized)	
  

–  Make	
  close	
  to	
  5_2_0	
  tracking,	
  use	
  steps	
  0-­‐2,	
  and	
  4A,	
  add	
  step	
  “-­‐1”	
  
–  Step	
  3	
  (pixel	
  pairs)	
  to	
  recover	
  efficiency	
  in	
  eta	
  ~1.2–1.4	
  region	
  

Iteration Seeds pT cut 
(GeV) 

d0 cut 
(cm) 

dz cut 
(cm) 

Min 
hits 

0 pixel quadruplets 0.6 0.02 4.0σbs 3 
1 pixel triplets 0.6 0.02 4.0σbs 3 
2 low pT pixel triplets 0.2 0.02 4.0σbs 3 
3 pixel pairs with vtx 0.6 0.015 4.0σbs 3 

3old  detached triplets 0.3 1.5 15.0 3 
4A pixel +(TEC(1 ring)) 

triplets 
0.4 0.02 10.0 3 

4B BPIX+TIB triplets 0.6 1.5 10.0 3 
5 TIB, TID, TEC pairs 

(fewer) 
0.7 2.0 10.0 4 

6 TOB, TEC pairs 0.6 6.0 30.0 6 

Release	
  CMSSW_4_2_8_SLHCtk3_patch1	
  Tracking	
  steps	
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Performance: Tracking vs PU 
•  Average	
  tracking	
  efficiencies	
  vs	
  PU	
  

–  qbar,	
  high	
  purity	
  tracks,	
  pT	
  >	
  0.9	
  GeV/c	
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Performance: Tracking vs PU 
•  Average	
  track	
  fake	
  rates	
  vs	
  PU	
  

–  qbar,	
  high	
  purity	
  tracks,	
  pT	
  >	
  0.9	
  GeV/c	
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B-tagging Performance vs PU 
•  qbar,	
  CSV	
  tagger,	
  compare	
  current	
  and	
  upgrade,	
  <PU>=50	
  

–  ak5PFjets	
  PFnoPU,	
  jet	
  pT	
  >	
  30	
  GeV,	
  DUS,b	
  jets	
  

Much Better Handling 
High Pileup2.5 Robustness to Pixel Inner Layer Inefficiencies 19
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Figure 18: The b-tagging efficiencies for b-jets with pT > 30 GeV/c in a tt̄ sample plotted
against average pileup for (a) light quark jet mis-tag rates of 1% (solid points) and 10% (open
points), and for (b) charm quark jet mis-tag rates of 10% (solid points) and 1% (open points).
Values for the current pixel detector are shown in circular points while those for the Phase 1
upgrade detector are shown with squares.

efficiencies in the inner pixel barrel layer (BPIX1). A tt̄ sample was used with an average pileup374

of 50, and no (dynamic) data loss was simulated in any layer other than BPIX1.375
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Figure 19: Average tracking efficiency (a) and average track fake rate (b) for the tt̄ sample as a
function of the efficiency of the first layer of the barrel pixel detector. Results were determined
for the current pixel detector (blue squares) and for the upgrade pixel detector (red dots). The
ratios given in the lower part of the plot are to the efficiency (a) or fake rate rate (b) when the
first barrel pixel layer is 100% efficient.

The results of the tracking performance study is given in Fig. 19. It can be seen that as expected376

the average tracking efficiency drops with the inefficiency in the first pixel barrel layer for both377

the current and upgrade pixel detectors but the drop is less sharp for the upgrade detector,378

reducing the relative tracking efficiency loss by about a factor 2–3. The average track fake rate379

is also seen to increase less with the upgrade pixel detector.380

For the b-tagging study, the b-tagging performance are shown in Fig. 20. To illustrate the im-381

provement with the upgrade pixel detector for a particular operating point, the b-tagging effi-382

ciencies for a light quark mis-tag rate of 1% are plotted against the BPIX1 efficiency in Fig. 21(a).383

The relative loss of b-tagging efficiency due to inefficiencies in BPIX1 compared to when BPIX1384

is 100% efficient is shown in Fig. 21(b). Again it can be seen that the upgrade detector helps to385
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Future activities 
•  April	
  –	
  May	
  2013	
  	
  

–  New	
  person	
  fully	
  dedicated	
  to	
  AIDA	
  project	
  will	
  be	
  hired	
  
–  New	
  person	
  will	
  be	
  fully	
  involved	
  in	
  the	
  tracking	
  code	
  developing	
  

for	
  2015	
  data	
  taking	
  and	
  phase	
  1	
  and	
  phase	
  2	
  prepara<on	
  
•  May	
  2013	
  –	
  Jul	
  2013	
  

–  Iden<fy	
  components	
  	
  that	
  need	
  to	
  be	
  op<mized	
  and/or	
  
redesigned	
  	
  

–  Priori<ze	
  list	
  of	
  components	
  
–  Start	
  the	
  itera<ve	
  procedure	
  for	
  each	
  component	
  according	
  to	
  
the	
  priority	
  list	
  	
  

•  From	
  Aug	
  2013	
  -­‐	
  for	
  each	
  component	
  the	
  following	
  step	
  will	
  
be	
  done	
  
–  Prototype	
  
–  Integra<on	
  into	
  the	
  CMSSW	
  
–  Valida<on	
  of	
  the	
  Physics	
  performance	
  

11/04/2013	
   AIDA-­‐WP2	
  Mee<ng	
  -­‐	
  L.	
  Silvestris	
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Back up 



CMSSW Performance: Digitization and Reconstruction 
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Timing includes: Digitization 
from SimHit, Packing to RAW 
format 
Performance review ongoing 
up to 20 PU events 

# PileUp  
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Timing based on MC 
Track reconstruction accounts  
for ~ 40-50% total CPU time 
Next to leading contributors:  
Particle Flow, conversions, Muon ID 
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CMS-­‐Phase1	
  new	
  Pixels	
  

11/04/2013	
   AIDA-­‐WP2	
  Mee<ng	
  -­‐	
  L.	
  Silvestris	
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µ-­‐twisted	
  cables	
  

Coling	
  pipes	
  

modules	
  

CF-­‐Strips	
  

displaced	
  
ladder	
  

displaced	
  
ladder	
  

First	
  Barrel	
  Layer	
  
16	
  faces	
  version	
  



Data loss for Upgrade Studies 
– Peak	
  luminosity	
  values	
  

Current Detector Radius 
(cm) 

% Data loss at 
1×1034 @25ns 

% Data loss at 
2×1034 @25ns 

% Data loss at 
2×1034 @50ns 

BPIX1 4.4 4.0 16 50 
BPIX2 7.3 1.5 5.8 18.2 
BPIX3 10.2 0.7 3.0 9.3 

FPIX1&2 0.7 3.0 9.3 

Phase 1 Detector Radius 
(cm) 

% Data loss at 
1×1034 @25ns 

% Data loss at 
2×1034 @25ns 

% Data loss at 
2×1034 @50ns 

BPIX1 3.0 1.19 2.38 4.76 
BPIX2 6.8 0.23 0.46 0.93 
BPIX3 10.9 0.09 0.18 0.36 
BPIX4 16.0 0.04 0.08 0.17 

FPIX1-3 0.09 0.18 0.36 
35	
  



Pixel Upgrade Material Budget 
Reduced	
  material	
  even	
  with	
  more	
  layers	
  

“Volumes” Mass (g) 
Current Design Upgrade 

BPIX η<2.16  16801 6618 
FPIX η<2.50 8582 7024 
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50%	
  less	
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conversion	
  in/
before	
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eta	
  1.5	
  



Impact Parameter Resolutions 
•  Transverse:	
  muon	
  sample	
  (10	
  muons/event),	
  <PU>=50	
  

–  Generated	
  flat	
  in	
  E	
  and	
  eta	
  (plot	
  vs	
  absolute	
  p	
  and	
  in	
  4	
  eta	
  
regions)	
  

–  Compare	
  current	
  and	
  upgrade	
  detectors	
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Fall 2011 campaign: from CMSSW42x to 44x (2) 
Copy-­‐less	
  hit	
  masking	
  Each	
  step	
  of	
  the	
  itera<ve	
  tracking	
  works	
  on	
  the	
  hits	
  not	
  
yet	
  associated	
  to	
  any	
  track.	
  This	
  was	
  done	
  by	
  crea<ng	
  a	
  new	
  collec<on	
  of	
  
surviving	
  hits	
  at	
  each	
  step.	
  Implemented	
  a	
  data	
  member	
  to	
  store	
  masking	
  bits	
  	
  
Batch	
  cleaning	
  of	
  seeds	
  successfully	
  propagated	
  (track	
  candidates)	
  The	
  track	
  
candidates	
  are	
  filtered	
  in	
  1k	
  batches	
  to	
  avoid	
  storing	
  too	
  many	
  of	
  them	
  
Efficient	
  quality	
  assignment	
  Each	
  itera<ve	
  step	
  assigns	
  tracks	
  to	
  a	
  quality	
  <er.	
  
Old	
  implementa<on	
  just	
  created	
  a	
  track	
  copy	
  per	
  each	
  <er;	
  implemented	
  a	
  data	
  
member	
  to	
  store	
  the	
  quality	
  <er	
  bits	
  
Efficient	
  track	
  merging	
  The	
  track	
  collec<ons	
  resul<ng	
  from	
  steps	
  have	
  to	
  be	
  
merged	
  and	
  cleaned.	
  The	
  merging	
  algorithm	
  has	
  been	
  improved	
  by	
  ge�ng	
  rid	
  
of	
  intermediate	
  collec<ons.	
  

implementation and do not change the physics outcome of the tracking reconstruction workflow.
They are mainly targeted to reduction and better handling of the memory and in fact they allow
for a 40% cut of the memory budget. These modifications are described below in more detail.

Copy-less hit masking within the iterative tracking. Each step of the iterative tracking,
but the first, works on the hits not yet associated to any track. Technically this was
implemented by creating a new collection of surviving hits at each step. To save memory,
a masking algorithm has been implemented adding to the hit object an appropriate data
member for the masking bits. Results are unchanged with a major reduction of the allocated
memory.

Batch cleaning of track candidates. The track candidate results from a seed that has been
successfully propagated. Before being declared as a reconstructed track, the track candidate
must undergo a filtering selection to reject fakes. To avoid storing too much track candidates
in memory, the cleaning procedure is done once a subsample of 1000 track candidates has
been accumulated with large benefit on the overall required memory.

E�cient quality assignment. Each step in the iterative tracking assigns tracks to a quality
tier. Old implementation of the algorithm just created a copy of the same track per each
quality tier it was belonging to; this has been modified by removing the copying and adding
an appropriate data member to store the quality tier bits with an obvious advantage on the
memory consumption.

E�cient track merging. After all iterative steps, the resulting track collections have to be
merged and further cleaned from potential fake tracks and duplicated tracks. In fact, only
hits associated to tracks with highest quality, know in CMS as high purity tracks, are not
used in the following steps. But hits associated to lower quality tracks are retained, in the
attempt to build better tracks out of them with di↵erent seed and propagation parameters.
The old implementation of the merging algorithm compared the collection created by the
various steps in pairs creating intermediate collections to be further compared with other
collections up to the end of the process. In the updated version all track collections feed a
merging module that works without creating any intermediate collection. This is pictorially
shown in figure 4.

The second group of ameliorations directly a↵ects the algorithms and thus the outcome
on observables and has to be evaluated also with respect to performances on physics. These
modifications target the CMSSW modules related to tracking that are dominating, in terms of
CPU time, the entire reconstruction chain and are described in the following.

Figure 4. Schematical representation of the old (left) and the new (right) merging algorithm for
an hypothetical iterative tracking with five steps; “intermediate” track collections are avoided
in the new algorithm and this allows for consistent memory savings.
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Fall 2011 campaign: from CMSSW42x to 44x (3) 
Par8cle	
  flow	
  links	
  The	
  PF	
  algorithm	
  links	
  tracks	
  to	
  calorimetric	
  clusters	
  in	
  the	
  
(η,φ)	
  space.	
  Done	
  in	
  42x	
  by	
  CPU	
  intensive	
  nested	
  loops,	
  with	
  a	
  complexity	
  that	
  
scales	
  quadra<cally	
  with	
  the	
  mul<plicity	
  N.	
  In	
  44x	
  implemented	
  a	
  kd-­‐tree	
  based	
  
algorithm:	
  the	
  (η,φ)	
  space	
  is	
  split	
  into	
  appropriate	
  domains,	
  each	
  containing	
  
one	
  single	
  object,	
  organized	
  in	
  a	
  tree.	
  The	
  cluster	
  closest	
  to	
  a	
  given	
  track	
  is	
  
found	
  with	
  a	
  very	
  fast	
  binary	
  search	
  that	
  ends	
  up	
  in	
  the	
  closest	
  neighbor	
  
domain.	
  The	
  complexity	
  that	
  scales	
  as	
  N·∙logN.	
  Already	
  extended	
  to	
  other	
  
CMSSW	
  modules	
  by	
  the	
  implementa<on	
  of	
  a	
  generic	
  kd-­‐tree	
  class.	
  

	
  

Figure 5. Pictorial representation of the kd-tree algorithm in the case of a very simple neighbor
search problem in the (⌘,�) plane: a track (represented by the “⇥” symbol) needs to be
associated to one of the calorimetric clusters represented by the dots labelled with letters. On
the left panel it is shown the way (⌘,�) is split into domains and the resulting navigation tree
is sketched on the right.

the hadronic energy fraction in jets within the Particle Flow, the global event
reconstruction [7][8], that consists in reconstructing and identifying each single particle
with an optimized combination of all subdetector information. To avoid consuming CPU
time in the heavy vertex fit with candidates that are very likely to be fakes, a very simple
preselection has been implemented: a nuclear interaction candidate track is kept only if PT

exceeds 800MeV/c, in case of primary tracks, or if the impact parameter in the xy plane
is larger then 2mm for secondary tracks; the vertex candidate must have at least three
tracks (one primary and two secondaries or three secondaries) and, finally, candidates are
discarded if the secondary vertex estimate falls within the beam pipe. These simple criteria
are enough to reduce the combinatorics such that the nuclear interaction reconstruction
gains a factor 5 in CPU time with no observable degradation in physics performances.

Particle flow links. The Particle Flow algorithm needs to link tracks to calorimetric clusters
in the (⌘,�) parameter space. This problem of nearest neighbor search over a large number
of objects in CMSSW 4.2.x is implemented with nested loops and results to be rather time
intensive. Moreover the complexity scales quadratically (N2) as the object multiplicity N

increases. In CMSSW 4.4.x the well known linearization technique known as kd-tree [9] has
been introduced to replace nested loops. The method consists in an algorithm that, starting
from a collection of objects (calorimetric cluster, for example), dynamically splits the (⌘,�)

Figure 6. Breakdown of the
average CPU time per event in
arbitrary units before and after ‘Fall
2011’ for each improvement area of
the tracking reconstruction software
(simulated QCD events with 30 pile-
up interactions).
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Parallelization within the modules 
Iden<fy	
  modules	
  that	
  perform	
  tasks	
  where	
  paralleliza<on	
  can	
  be	
  
easily	
  implemented;	
  tracking	
  is	
  a	
  clear	
  candidate,	
  i.e.	
  track	
  building	
  
aTer	
  seeding	
  (paqern	
  recogni<on)	
  within	
  an	
  itera<ve	
  step	
  
Made	
  the	
  algorithms	
  thread	
  safe	
  (could	
  not	
  be	
  trivial	
  in	
  case	
  of	
  
tracking)	
  CAVEAT:	
  going	
  thread	
  safe	
  could	
  result	
  in	
  significant	
  memory	
  
overhead...	
  

#1 
#2 

#3 

#4 

...parallel 
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Hough transform basics 
Each	
  hit	
  is	
  compa<ble	
  to	
  many	
  trajectory	
  hypotheses	
  that	
  can	
  be	
  represented	
  
by	
  curves	
  in	
  an	
  appropriate	
  trajectory	
  parameter	
  space	
  (typically	
  straight	
  lines);	
  
the	
  intersec<on	
  between	
  many	
  of	
  these	
  curves	
  is	
  a	
  reconstructed	
  track.	
  So	
  hits	
  
are	
  transformed	
  into	
  lines	
  (or	
  curves,	
  more	
  in	
  general)	
  in	
  the	
  track	
  parameter	
  
space	
  by	
  an	
  appropriate	
  conformal	
  transforma<on,	
  and	
  accumula<on	
  points	
  
are	
  iden<fied.	
  

ATRACK 

BTRACK 

histogramming 
method to find the 
accumulation point 

y=Ax+B ⇒ B=-xA+y 
for each (X,Y) draw B=-XA
+Y in the (A,B) space 


