



# IN2P3 AIDA MACA CONTRACTOR OF THE SECOND OF



AIDA WP9.5: MILESTONES and SCHEDULE) mega

Schedule presented at the AIDA Kick Off meeting

2011: Characterization of the 2<sup>nd</sup> generation ROC Chips

- Dedicated run produced in March 2010
  - 25 wafers received in June
  - 20 000 chips packaged in the US

**2012** Feb 2013: Submission and test of one of the 3<sup>rd</sup> generation chips

2013 2014 ?: Submission of a second 3<sup>rd</sup> generation chip

**August 2013: Report** 

- Budget for 3rd generation of electronics:
  - 31k€ (ECAL) + 50 k€ (Hadronic Calorimeter) => 2 chip submissions
  - 30 ppm
- Cost:
  - Multi Project runs (MPW): 1k€/mm2
  - Packaging: \$3500
  - Testboard: 1500 €



0.35µm SiGe AMS technology

**SKIROC2** 

64 ch. 65 mm

ECAL Si

# AIDA WP9.5: 3rd generation of ROC cl AIDA Omega



- 2<sup>nd</sup> generation ROC chip
  - Auto-trigger, analog storage, digitization and token-ring readout, common DAQ
  - Power pulsing : <1 % duty cycle
- 3<sup>rd</sup> generation ROC chip
  - **Independent channels (= Zero suppress)** 
    - 64/36 address pointers
    - ReadOut, BCID, SCA (Spiroc and Skiroc) management

#### => Digital part much more complicated

- SCA depth: 8 instead of 16
- Possibility to use "Roll mode" by Slow Control: circular memory very useful for Testbeam
- New TDC with no dead time
- New Slow Control (Triple voting) using I2C link (while keeping the « old SC » system)



#### **HARDROC2**

#### 64 channels (RPC SDHCAL)

- preamp + shaper+ 3 discris (semi digital readout)
- Auto trigger on 10fC up to 20 pC
- 5 0.5 Kbytes memories to store 127 events
- Full power pulsing =>  $7.5 \mu W/ch$
- 2010 TB: 1 m2 (144 HR2b)
  - power pulsing in magnetic field successfully tested
- SDHCAL technological proto with 40 layers (5760 HR2 chips) built in 2010-2011.
  - Testbeam summer 2011: pb with the DAQ2 (HDMI) + pb of cooling
  - TB November 2011: 6 detectors and USB DAQ: good performance of the electronics and detector
  - TBs 2012 with 40 detectors and intermediate DAQ (HDMI & DCC cards for synchronization and USB for config & readout)

Very good TB results with a complete system, autotrigger mode, power pulsing

See Vincent's Talk

HARDROC3 FE: No major modifications needed



Cosmic hadronic shower



#### **HARDROC3**

- No major modifications needed in the FE
  - submitted at the end of Feb 2013 (SiGe 0.35μm), expected in June 2013
  - Die size ~30 mm2 (6.3 x 4.7 mm2)
  - To be packaged in a TQFP208
  - 64 independent channels
  - I2C link (@IPNL)
  - PLL: integrated before in a building block, first measurements are very good
    - Input frequency 2.5 MHz =>output frequency: 10, 20, 40, and 80 MHz available
  - Bandgap: new one with a better temperature sensitivity, tested in a building block
  - Temperature sensor: tested in a building block, slope – 6mV/°C
  - 2013: dedicated to the test of HR3 before submitting other chips



#### **MICROROC**



#### 64 channels for µMegas (DHCAL)

- ☐ Very similar to HARDROC except for the input preamp and shapers (100-150 ns)
- Noise: 0.2fC (Cd=80 pF). Auto trigger on 1fC up to 500fC
- $\square$  Pulsed power: **10**  $\mu$ **W/ch** (0.5 % duty cycle)
- 4 Micromegas prototypes of 1x1 m2 were constructed in 2011-2012 and tested in particle beams inside the DHCAL steel structure in 2012
- □ Very good performance of the electronics and detector (Threshold set to 1fC)

See Vincent's Talk







#### SPIROC2

#### 36 channels for AHCAL (SiPM)

- □ Autotrigger on 1 spe (150 fC), 16 depth SCA for charge measurements (up to 300 pC) and time measurement (< 1 ns)
- □ 2 memories of 2K bytes to store charge and time measurements from the internal 12 bits ADC
- □ Pulsed power: 25 µW/ch (1 % duty cycle)



- ☐ Testbench measurements at ORSAY and at system level at DESY in 2011 showed some fine effects in spiroc2b to be corrected
  - ✓ Building block with a new FE for spiroc tested in December 2011: new input preamp to solve rate dependency pb + coherent noise + Crosstalk (HG/LG)
  - √ Very good analog performance
    - $\checkmark$  HG Preamplifier + Slow shaper: Vmax= 46 mV/pe, Noise RMS = 2,3mV =>SNR  $\sim$  20
  - $\Rightarrow$  Submission of SPIROC2C (Feb 2012) with this analog FE and the digital part of spiroc2b but higher sensitiivity to digital coupling through the substrate
  - ✓ Klaus2 chip (Heidelberg University): also a good candidate for the FE of Spiroc => "KlausROC"

#### **TEST BEAMs with SPIROC2b**

- 576 channel AHCAL layer prototype successfully tested at CERN and at DESY in 2012 See Katja's Talk
- TDC: First tests of TDC ramps in SPIROC2b show promising results
  - ☐ Many corrections needed: memory cell and channel wise offsets correction, chip wise ramp corrections
  - □ Electronics resolution ~2 ns
- Many measurements on testbench with 2b (referred to vdd) and 2c (referred to gnd)
  - □ Pedestal shift when large pulses (> 1000 pe-) are sent in one channel





500

late 2013-01-11

1000

575

550

#### **SKIROC2**



- 64 channels for ECAL (Si pin diodes)
  - □ Autotrigger on 0.5 MIP (2 fC), 15 depth SCA for Charge measurement (0-2500 MIPs) and Time measurement (< 1 ns)
  - □ 1 memory of 4K bytes to store the digitized measurements of Charge and Time by the internal 12 bits ADC
  - □ Pulsed power: **25 µW/ch** (1 % duty cycle)

#### ☐ FEV boards

☐ Testbench measurements: very good performance, much more difficult on FEVs!





#### **TESTBEAMs with SKIROC2**

- Successful test beams @ DESY in 2012 (1 to 6 layers) and 2013 (10 layers), power pulsing mode, autotrigger mode, e- (1 to 5GeV)
  - ☐ 4 packaged skiroc2/slab See Roman's talk
  - Nice event displays

#### **□** BUT

- □ BCID+1: "retriggering" of the ASIC wo hit
  - ☐ Understood and easy to correct and to cut offline
- □ Plane events
  - ☐ Input PA referred to vdd (= Spiroc) and power supply common to the 4 ASICs
  - □ Depend of the number of ASIC with hits and of the number of channels that triggered
  - Number of plane events reduced from 80% down to 10% using decoupling capacitors and separating vdda and vddd\_delay





()mega



# **Building blocks (integrated in HR3): results**



- In parallel, small building blocks were designed and submitted in 2012
- Bandgap (5 chips):
  - Temperature sensitivity:  $\sim 70 \mu V/^{\circ}C$  (was 250  $\mu V/^{\circ}C$  with the previous BG)
  - Non uniformity between chips depends on the uniformity of the reference voltages which are referred to a 2.5V generated by a bandgap: Vbg Uniformity (30°C): < 14 mV (was 20 mV in hardroc2)
- Temperature sensor: -6mV/°C
- **PLL**: to generate clocks internally. First measurements are very good
  - Input frequency 2.5 MHz =>output frequency: 10, 20, 40, and 80 MHz available





## **SUMMARY**





#### Nice TB results obtained with all the ROC chips, in <u>AUTOTRIGGER mode</u>

- Complete system, large dynamic range, low noise
- Tests with power pulsing mode

#### Still some fine effects to be understood with the 2nd generation chips

- SPIROC2
  - Spiroc2b: Pedestal shift (with large signals and external trigger) under investigation
  - Spiroc2c: Very good analog performance (building block wo the digital part), sensitivity to digital coupling through substrate.

#### SKIROC2

Plane events, digital coupling to be understood (FEV design vs chip)

#### End of Feb 2013: submission of HARDROC3

- Semi digital readout => « Simple » chip compared to Skiroc and Spiroc: I2C, independent channels, circular memory, one register/channel, temperature sensor
- package: TQFP208 instead of TQFP 160 for HR2
- ⇒ New 2-3 m RPC chambers to be built to test HR3 at the system level
- Die size ~30 mm2 => 30 k€ + 5K test setup (AIDA funding) + 16 ppm/30 ppm used
- Tests should start at the beginning of June 2013 -> Report for August 2013

#### SPIROC3 and SKIROC3 : Complex chips

- I2C link, independent channels but also new PA, TDC, SCA
- Hardroc3 test feedback necessary before submitting Spiroc3 and Skiroc3
- Size should be ~43 mm2 (spiroc3) and 81 mm2 (skiroc3)=> Dedicated run necessary to complete AIDA funding
- Submission: 2014?



# **BACK UP Slides**

# **3Gen ROC chips: common features**



- DIF sequencing (Acq, Conv and Readout):
  - Backward compatibility with 2Gen ROC chips sequencing
  - Use of ChipSat signal
  - Daisy chained chips for readout





- Possibility to use Roll mode by Slow Control:
  - If RollMode = "0" → Backward compatibility with 2Gen ROC chips behavior
    - Only the N first events are stored
  - If RollMode = "1" → 3Gen ROC chips behaviour
    - Use the circular memory mode
    - Only the N last events are stored

# **3Gen ROC chips: common features**



- Slow control parameters:
  - Backward compatibility with 2Gen ROC chips slow control
    - Use of classical shift register slow control
  - Embedded I2C
    - 7-bit address + 1 general call address (127 chips can be addressed)
    - Access port doubled
    - Bidirectional data line with open collector (Driver will be the same as Dout)
  - Read back capability of SC bits (non destructive)



Write frame:



Read frame:



# **3Gen ROC chips: common features**



Extra pin needed for I2C / SC:

| HARDROC 2    |   | HARDROC 3           |      |                       |
|--------------|---|---------------------|------|-----------------------|
| ShiftReg_In  | 1 | ShiftReg_In         | 1    |                       |
| ShiftReg_Out | 1 | ShiftReg_Out        | 1    | Standard CC           |
| ShiftReg_Clk | 1 | ShiftReg_Clk        | 1    | Standard SC           |
| ShiftReg_Rst | 1 | ShiftReg_Rst        | 1    |                       |
|              |   | ShiftReg_Loadb      | 1    |                       |
|              |   | ShiftReg_ReadBack   | 1    | SC with triple voting |
|              |   | Error_Triple_Voting | 1    |                       |
|              |   |                     |      |                       |
|              |   | 7-bit I2C @         | 7    |                       |
|              |   | 2 x (SCL / SDA)     | 4    |                       |
|              |   | Select_I2C_Port     | 1    | ≻ I2C                 |
|              |   | Clk_I2C_SR          | 1    |                       |
|              |   | Rstb_I2C            | 1    |                       |
|              |   | Select_I2C_SR       | 1    | Selection I2C or sto  |
|              |   |                     |      |                       |
| Total        | 4 | Total               | 4+18 |                       |

d SC

### **HARDROC2b**

- □ 64 channels, 20 mm2
- □ Variable gain (8bits) current preamps (50 ohm input)
- ☐ One multiplexed analog output (12bit)
- □ 3 shapers, variable Rf,Cf and gains
- ☐ 3 thresholds (=> 3 DACs):
  - □ 10 fC, 100fC, 1pC (megas)
  - □ 100fC, 1pC, 10pC (GRPC)
- □ Auto-trigger on 10fC
- □ Store all channels and BCID for every hit. Depth = 128 bits
- Data format :
  128(depth)\*[2bit\*64ch+24bit(BCID)+8bit(Heade
  r)] = 20kbits
- 872 SC registers, default config
- Power pulsing



#### **MICROROC** ~ HR2B

- ☐ Collaboration with LAPP Annecy
- ☐ 64 channels, 20 mm2
- □ Same as HARDROC but with charge preamp input stage + HV protection and slower shaping + 4bit DAC/channel
- □ Preamp optimized for Cd=80 pF, noise = 0.2 fC. Cf=0.4pF Rf=5M
- Maximum input charge : 500 fC
- □ Bi-gain shaper (G1-G4), peaking tunable 50-200 ns (2 bits)
- ☐ 3 thresholds: Lowest threshold ~2 fC
- □ Pin to pin compatible with HR2
- Store all channels and BCID for every hit. Depth = 128 bits
- Data format :
  128(depth)\*[2bit\*64ch+24bit(BCID)+8bit(Header)]
  = 20kbits
- □ 872 SC registers, default config
- Power pulsing



## SPIROC2b

- •36 channels, 32 mm2
- Bi-gain (autogain)
- Analogue Memory depth: up to 16 events can be stored (columns)
- 2 × 36 channels (Charges/Times)



**SKIROC2** 



# **BCID+1** wo hit in SKIROC2





Conversion: BCID with one hit, SCA0 ch5: holded value= peak of the signal, other SCA0= holded value=pedestal, other SCAi= ped BCID+1: No conversion because OR64 level=0 during this BCID+1



Conversion: BCID, one hit, SCA0 ch5: holded value= peak of the signal, other SCA0= holded value=pedestal BCID+1, no hit, SCA1 ch5 holded value=ped.