Methods for architectural design methods of 3D-integrated systems

Andy Heinig, Uwe Knöchel

Fraunhofer IIS, Design Automation Division Zeunerstraße 38, 01069 Dresden

andy.heinig@eas.iis.fraunhofer.de

Phone: +49 351 4640 783

Agenda

- Introduction
- Case study: interposer for Wide I/O memory processor integration
- Chip-Package-Board-Co-design
- 3D-Floorplanner and Flow
- Conclusion

Fraunhofer IIS

Design Automation Division EAS

Profile

- One of the largest research institutions in the field of design automation in Europe
- Microelectronics and heterogeneous systems
- Focus on all aspects of functional design

Challenges

- Mastering the growing complexity of electronic systems
- Closing the gap between manufacturing and system design
- Comprehensive consideration of different physical domains

3D @ Fraunhofer IIS/EAS

History

- Involved in 3D projects for over 10 years
- Starting with electrical characterization of TSVs and thermal simulation
- Focused on technology improvement

Today

- Multi physics analysis for library development and design rules
- Integration into Design tools and flows
- Development of methods for design space exploration (aca path finding, scouting) and floorplanning
- Support of system design

Why should the designer move from SoC to 3D Integration?

- Integration of mixed technologies
- Performance
 - Reduced interconnect length
 - Lower delay, higher speed
 - Reduced power consumption
- Form Factor
 - Reduced volume and weight
 - Reduced footprint
- Reduced Costs
 - Cost per transistor start to grow below 22-nm
 - Integration of heterogeneous technologies
 - Integration of dies from high volume production
 - Higher re-use rate (IP cores)

What designers ask:

- What is the diameter of TSV? How big is the keep-out zone?
- How many TSV can I use?
- Who manufactures prototypes?
 - Who provides the interposer?
 - Who makes stacking and packaging?
 - How much costs this?
- Who manufactures products?
 - Production time?
 - Prizes?
 - Testability?
- How can I design this?
 - EDA-tool environment
 - Design Guidelines / Design-Kits

Evolution of advanced packaging

2.5D-integration with interposer

- Multiple IC are integrated at substrate or interposer
- Supports integration of existing IP
- Commercial application has been started
- Reduced signal delay

Side-by-side

Top-bottom

3D-integration

- System and individual dies are optimized for 3D
- Provides highest performance and integration level
- Co-design needed
- Still in development only few products on market (memory stacks, processor with memory)

Direct stacking

Challenges for 2.5D and 3D design

Top challenge for system design

Early estimation of performance, cost, reliability and risks

Why is this so difficult?

Design space complexity

- Structural complexity
 - Multi scale, multi physics
 - Exceeds capacity of current simulators
- Process complexity
- Collaboration complexity
 - System architect
 - Component Designers
 - IC manufactures
 - OSATs

Modeling Concepts for Multi-Physics- Analysis

- Thermal behavioral model
- (Electro-)Thermal system simulation

- Detailed analysis of individual or critical parts with 3D-FEM analysis
- Development of models at higher abstraction levels to handle system complexity
- Interfaces between different tools

Thermal simulation of entire 3D stack

Agenda

- Introduction
- Case study: interposer for Wide I/O memory processor integration
- Chip-Package-Board-Co-design
- 3D-Floorplanner and Flow
- Conclusion

First Standard: JEDEC Wide I/O memory

- Application: memory on memory, memory on processor stacking
- JEDEC wide I/O memory standard for 3D integration: JESD229

Case study: Side by side integration of JEDEC Wide I/O memory and processor

Pads are located in the center of memory die

Requirements

- 2200 pins processor, 1200 pins memory, 1000 pins external
- Side by side integration to avoid thermal and other problems
- Optimized for mass production

2.5D interposer for JEDEC Wide I/O memory

Initial Configuration

Technology Parameters:

- 10um metal width
- 10um metal space
- 10um TSV

- Top of interposer
 - 4 metal layers for signal routing
 - 1 additional metal layer for pads
- Bottom of interposer
 - 1 metal layer for signal routing
 - 1 additional metal layer for pads
- As both active IC placed on top, signals will be mainly routed on top of interposer -> less TSV needed

But 5 metal on top and only 2 at bottom is not a good choice ...

Technology Design Guide Lines

Metal: Space 8µm Width 8µm Height 3µm

Dielectric: Polymer e_r 2.9 Thickness 5µm

TSV: Diameter 10µm Depth 120µm

2.5D interposer for JEDEC Wide I/O memory

Second configuration

Technology Parameters:

- 10um metal width
- 10um metal space
- 10um TSV

- Top of interposer
 - 2 metal layers for signal routing
 - 1 additional metal layer for pads
- Bottom of interposer
 - 2 metal layer for signal routing
 - 1 additional metal layer for pads
- Number of metal layers balanced between top and bottom
- More TSV needed (also for connections between processor and memory)
- Simultions shows that timing constraints can be achieved with routing via TSV

The warping can be avoided, but we can additionally save costs ...

2.5D interposer for JEDEC Wide I/O memory

Cost optimized configuration

Technology Parameters:

- 10um metal width
- 10um metal space
- 10um TSV

- Top of interposer
 - 1 metal layer for signal routing
 - 1 metal layer for routing and pads
- Bottom of interposer
 - 1 metal layer for signal routing
 - 1 metal layer for routing and pads
- Number of metal layers balanced
- Only two metal layers on each side!

Challenge:

- Very high density of wires at interposer
- Standard routing algorithms need more metal layers
- Optimized interposer was routed by our inhouse algorithms

Interposer for Processor and JEDEC Wide IO Memory

Cost optimized configuration – Interposer layers and TSV

Manufacturing of wide-I/O demonstrator is ongoing at our colleagues from Fraunhofer IZM/ASSID.

Agenda

- Introduction
- Case study: interposer for Wide I/O memory processor integration
- Chip-Package-Board-Co-design
- 3D-Floorplanner and Flow
- Conclusion

Chip-Package-Board-Co-design (1)

Requirements

- Evaluation of different packages
- Evaluation of different stacking technologies
 - Side-by-side in package (e.g. SiP, eWLB)
 - Side-by-side at interposer
 - 3D stacking
- Evaluation of different assembly technologies
 - Ball, bumps, bonding
 - Die to wafer, wafer to wafer
- Embedding of passives
- Evaluation of PCB technology (routability around device)
- Considering performances
 - e.g. timing, temperature
- Consideration of production cost demands

Chip-Package-Board-Co-design (2)

Goal: Guide the system designer to find the best suited solution.

- Optimization goal is production cost under consideration of performance requirements
- First generic cost function available, extension to company specific functions is ongoing

Thermal aware design space exploration

- Estimation of heat distribution in a stack
- evaluation of thermal constraints during design space exploration
- further research on package modeling ongoing

Initial floor plan

After thermal optimization

Final result (heat transfer and die size optimized)

Agenda

- Introduction
- Case study: interposer for Wide I/O memory processor integration
- Chip-Package-Board-Co-design
- 3D-Floorplanner and Flow
- Conclusion

3D- chip-stack co-design flow @ Fraunhofer EAS

Agenda

- Introduction
- Case study: interposer for Wide I/O memory processor integration
- Chip-Package-Board-Co-design
- 3D-Floorplanner and Flow
- Conclusion

3D Integration – Summary

- 3D-integration technologies offer
 - A wide design space for system realization
 - Increased system performance and higher integration level
- 3D-integration is still a new technology
 - Only few reference projects exist
 - Commercial products starts with 2.5D at interposer
 - Yield of 3D-manufacturing is increasing continuously
- Broader application of TSV-based products needs better ecosystem
 - EDA tools need to be enhanced or developed
 - Design-kits, design-rules and cost models are required
 - Standardization of design and manufacturing processes is ongoing, (IEEE, JEDEC, Semi Si2)

References

- 1. Limansyah, I., Wolf, M. J., Klumpp, A., Zoschke, K., Wieland, R., Klein, M., Oppermann, H., Nebrich, L., Heinig, A., Pechlaner, A., Reichl, H., Weber, W.: 3d image sensor sip with tsv silicon interposer, ECTC 2009, San Diego (2009)
- 2. Karnik, T.: 3d architectures and cad tools, D43D Workshop, Lausanne (2010)
- 3. Schneider, P., Elst, G.: Modeling approaches and design methods for 3D system design. In: Garrou, P.: Handbook of 3D integration. Vol.2: Technology and applications of 3D integrated circuits, Weinheim: Wiley-VCH, 2008, pp.529-574
- 4. Elst, G., Schneider, P., Ramm, P.: Modeling and Simulation of Parasitic Effects in Stacked Silicon. Proc. 2006 MRS Fall Meeting, November 27-December 1, 2006, Boston
- 5. Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph partitioning: Applications in vlsi domain, 34th Design and Automation Conference, pp. 526 529, 1997.
- 6. Schneider, P., Heinig, A., Fischbach, R., Lienig, J., Reitz, S., Stolle, J., Wilde, A.: Integration of multi physics modeling of 3D stacks into modern 3D data structures. 2nd IEEE International 3D System Integration Conference, 3DIC 2010
- 7. Heinig, A., Schuster, T.: A 3d stack cost optimization floorplanning and routing approach, DATE Workshop for 3D Integration, Grenoble 2011.
- 8. Knöchel, U., Heinig, A., Stolle, J.,; Reitz, S., Wilde, A.: Electronic design automation for implementation of 3D integrated systems. In: Heuberger, A.: Microelectronic systems. Circuits, systems and applications: Circuits, Systems and Applications, Berlin: Springer, 2011, pp.19-27
- 9. Reitz, S., Heinig, A., Martin, R.,; Stolle, J., Wilde, A.,: Thermal modeling of 3D stacks for floorplanning. 17th International Workshop on Thermal investigations of ICs and Systems, THERMINIC 2011: 27-29 September 2011, Paris, France, Grenoble: EDA Publishing, 2011, pp.153-158
- 10. Wolf S., Knoechel U., Heinig A., XML-Based Hierarchical Description of 3D Systems and SIP, IEEE Design & Test, Special Issue on EDA Industry Standards, August 2012

2.5 and 3D Design and Technology @ Dresden

- Strong dependency between design and technology (manufacturability, reliability, and yield)
- Fraunhofer offers technology/manufacturing and design support at their institutes in Dresden

