

SiPM Interconnections to 3D electronics

- SiMPs basics
- •Why do we need 3D interconnections
- •Concept of SiPMs with Bulk Integrated Quench Resistors SiPMI concept
- •What we want to do

Jelena Ninkovic

Max-Planck-Institute for Physics, Munich, Germany

What is a Silicon Photomultiplier - SiPM

- An array of avalanche photodiodes
 - operated in Geiger mode → binary device
 - passive quenching by integrated resistor
 - read out in parallel → signal is sum of all fired cells

What is available? Uhalhlaitarlahar BI SI>BI T4 U2 PD Individual surface resistors Metal (Al) grid SiPM Pixels of the SiPM

Why do we need 3D integration?

Components of a SiPM cell

T

SiPM cell components → SiMPl approach

Concept developed at

Max-Planck-Society Semiconductor Laboratory

Advantages and Disadvantages

Advantages:

- no need of polysilicon
- free entrance window for light, no metal necessary within the array
- coarse lithographic level
- simple technology
- inherent diffusion barrier against minorities in the bulk -> less optical cross talk

Drawbacks:

- required depth for vertical resistors does not match wafer thickness
- wafer bonding is necessary for big pixel sizes
- significant changes of cell size requires change of the material
- vertical 'resistor' is a JFET -> parabolic IV -> longer recovery times

Prototype production

Fill factor & Cross Talk

Fill factor limited only by the cross talk suppression need!

Pitch / Gap	Fill factor	Cross talk meas. (∆V=2V)
130μm / 10μm	85.2%	29%
130μm / 11μm	83.8%	27%
130μm / 12μm	82.4%	25%
$130\mu m$ / $20\mu m$	71.6%	15%

No special cross talk suppression technology applied just intrinsic property of SiMPI devices

Detection of particles

Excellent time stamping due to the fast avalanche process (<1ns)

MIP gives about 80pairs/ μ m \rightarrow huge signal in SiPM \rightarrow allows operation at small ΔV

Reduction of dark rate and cross talk by at least an order of magnitude

Topologically flat surface
High fill factor

Adjustable resistor value Low RC -> very fast

Active recharge

Ability to turn off noisy pixels

Cell electronics: Active quenching,
Bias control,
Cell activity,
Digital output

Pitch limited by the bump bonding

Topologically flat and free surface

High fill factor

Sensitive to light

Topologically flat and free surface

High fill factor

Sensitive to light

Topologically flat and free surface

High fill factor

Sensitive to light

Topologically flat and free surface High fill factor Sensitive to light

sensor wafer handle wafer

- 1. Structured implant on backside 2. bond sensor wafer on sensor wafer
- to handle wafer

3. thin sensor side to desired thickness

4. process SiMPI arrays on top side

Topologically flat and free surface High fill factor Sensitive to light

1. Structured implant on backside 2. bond sensor wafer to handle wafer

3. thin sensor side to desired thickness

4. process SiMPI arrays on top side

on sensor wafer

Topologically flat and free surface High fill factor Sensitive to light

1. Structured implant on backside 2. bond sensor wafer to handle wafer

3. thin sensor side to desired thickness

4. process SiMPI arrays on top side

on sensor wafer

Thanks for the attention!!