Capacitively coupled active sensors in 180nm HV-CMOS technology

Daniel Muenstermann (U Geneva)

presenting also on behalf of ATLAS HV-CMOS collaborators from Berkeley, Bonn, CERN, Glasgow, Heidelberg and Marseille

Why new sensors? Fluences at HL-LHC

- integrated luminosity: 3000 fb⁻¹
- including a safety factor of 2 to account for all uncertainties this yields for ATLAS:
 - at 5 cm radius:
 - ~2•10¹⁶ n_{eq} cm⁻²
 - ~1500 MRad
 - at 25 cm radius
 - up to 10¹⁵ n_{eq} cm⁻²
 - ~100 MRad
 - several m² of silicon
 - Current Inner Detector needs replacement
 - New ID sensors need to be more rad-hard and *cheaper* at the same time (more area to cover)

Silicon 1 MeV-equivalent flux

Implications for Pixel Sensors

- High fluences: trapping dominant
 - reduce drift distance, increase field \rightarrow reduce drift time:
 - 3D sensors
 - thin silicon
 - low depletion depth 'on purpose', e.g. low(er) resistivity silicon, dedicated annealing to increase N_{eff}
- Large areas: low cost of prime importance
 - industrialised processes
 - Iarge wafer sizes
 - cheap interconnection technologies

Idea: explore industry standard CMOS processes as sensors

- commercially available by variety of foundries
 - large volumes, more than one vendor possible
- 8" to 12" wafers
 - Iow cost per area: "as cheap as chips"
- (partially too) low resistivity p-type Cz silicon
 - thin active layer
 - wafer thinning possible

AMS H18 HV-CMOS

- Project initiated by Ivan Peric (U Heidelberg)
- Austria Micro Systems offers HV-CMOS processes with 180 nm feature size in cooperation with IBM
 - biasing of substrate to ~60(-100V) possible
 - substrate resistivity ~10 Ohm*cm $\rightarrow N_{eff} > 10^{14}/cm^3$
 - radiation induced N_{eff} insignificant even for innermost layers
 - depletion depth in the order of 10-20 $\mu m \rightarrow$ signal ~1-2 ke⁻
 - on-sensor amplification possible and necessary for good S/N
 - key: small pixel sizes \rightarrow low capacitance \rightarrow low noise
 - additional circuits possible, e.g. discriminator
 - beware of 'digital' crosstalk
 - full-sized radiation hard drift-based MAPS feasible, but challenging
 - aim for 'active sensors' in conjunction with rad-hard readout electronics first
 - Scope of the presentation:
 - Introduce the concept
 - Flash some results with MAPS test chips
 - Present first measurements with the active sensor prototype chip
 - Disclaimer: Too many slides, some are just for your reference...

A HV-CMOS sensor...

- essentially a standard n-in-p sensor
- depletion zone 10-20 µm: signal in the order of 1-2ke⁻
 - challenging for hybrid pixel readout electronics
 - new ATLAS ROC FE-I4 might be able to reach this region but no margin

The depleted high-voltage diode used as sensor (n-well in p-substrate diode)

...including active circuits: smart diode array (SDA)

- implementation of
 - first amplifier stages
 - additional cuircuits: discriminators, impedance converters, logic, ...
- deep sub-micron technology intrinsically rad-hard

CMOS electronics placed inside the diode (inside the n-well)

Several test-chips already existing:

SDA with sparse readout ("intelligent" CMOS pixels) HV2/MuPixel chip

Analog information

Binary information

SDA with frame readout (simple PMOS pixels) HVM chip

SDA with capacitive readout ("intelligent" pixels) Capacitive coupled pixel detectors CCPD1 and CCPD2 detectors

Test beam results: monolithic 🖬

- excellent resolution
- very good S/N ratio
- efficiency limited by readout artifacts:
 - column-based readout
 - row not active during readout
 - data analysis did not correct for this
 - very small chip \rightarrow low statistics

Efficiency vs. the in-pixel position of the fitted hit. Efficiency at TB: ~98% (probably due to a rolling shutter effect)

-10

20

40 dy [um]

-40 -30 -20

CPPD prototype results

- excellent noise behaviour: stable threshold at ~330 electrons
- good performance also after irradiation

CAPPIX/CAPSENSE edgeless CCPD 50x50 µm pixel size

Detection efficiency vs. amplitude Detection of signals above 330e possible with >99% efficiency.

CPPD prototype results

- Irradiation with 23 MeV protons: 1e15 neq/cm2, 150MRad
- FE-55 performance recovers after slight cooling

From MAPS to active sensors

- Existing prototypes would not suitable for HL-LHC, mainly because
 - readout too slow
 - time resolution not compatible with 40 MHz operation
 - high-speed digital circuits might affect noise performance
- Idea: use HV-CMOS as sensor in combination with existing readout technology
 - fully transparent, can be easily compared to other sensors
 - can be combined with several readout chips
 - makes use of highly optimised readout circuits
 - can be seen as first step towards a sensor being integrated into a 3Dstacked readout chip (not only analogue circuits but also charge collection)
 - Basic building blocks: small pixels (low capacitance, low noise)
 - can be connected in any conceivable way to match existing readout granularity, e.g.
 - (larger) pixels
 - strips

Pixels: sizes and combinations

- Possible/sensible pixel sizes: 20x20 to 50x125 µm
 - 50x250 µm (current ATLAS FE-I4 chip) too large
 - combine several sensor "sub-pixels" to one ROC-pixel
 - sub-Pixels encode their address/position into the signal as pulse-heightinformation instead of signal proportional to collected charge

Reticule size/stitching

- Sensor size is currently limited by reticule size of ~2x2 cm
 - however, the yield should be excellent (very simple circuit, essentially no "central" parts) so it might be interesting to cut large arrays of sensors from a wafer and connect individual reticules by
 - wire-bonding
 - post-processing (one metal layer, large feature size)
- There are HV-CMOS processes/foundries which allow for stitching
- Very slim dicing streets
 - Gaps between 1-chip modules could be rather narrow

□ □ □ □ □ Chip2			
□ □ □ □ □ Chip1	Pads	Chip to chip connections Chip1	
Reticle1	Ch	ip to reticle edge distance = 80 um	le2
•		•	

HV2FEI4

- A combined active strip/pixel sensor was designed and produced
 - strips compatible with ATLAS ABCN and LHCb/Alibava Beetle
 - pixels match new ATLAS FE-I4 readout chip
 - capacitive coupling
 - bump-bonding possible
- Structure
 - 6 sub-pixels form basic element
 - each 33 x 125 µm
 - connect to 2 FE-I4 pads
 - form a 100 µm pitch strip
 - small fill factor future options:
 - more circuits possible
 - smaller sub-pixels

HV2FEI4

- Chip size: 2.2mm x 4.4mm
- Pixel matrix: 60x24 (sub-)pixels of 33 μm x 125 μm
- 21 IO pads at the lower side for CCPD operation
- 40 strip-readout pads (100 µm pitch) at the lower side and 22 IO pads at the upper side for (virtual) strip operation
- On chip bias DACs
- Pixels contain charge sensitive amplifier, comparator and tune DAC
- Configuration via FPGA or µC: 4 CMOS lines (1.8V)

3 possible operation modes

- standalone on test PCB
- strip-like operation
- pixel (FE-I4) readout

Daniel Muenstermann

IO pads for CCPD operation

HV2FEI4: characterisation

Standalone tests

- first measurements at Heidelberg/Mannheim
- behaviour as expected
- monitor output showing physics -(radioactive source events)

HV2FEI4: Pixel readout

- First HV2FEI4s glued (!) to FE-I4A and FE-I4B
- HV2FEI4 wirebonds done through hole in PCB
 - could be bumps, anisotropic glue or TSVs later

HV2FEI4: Gluing

- Required alignment precision estimated to better than 10µm
 - bump pads on FE-I4 in this order of magnitude
 - easy to reach with bump-bonding machines (best quote <1µm precision)
- Up to now gluing trials done with
 - epoxy-based 12.5 µm thick lamination glue sheet
 - tricky handling, fairly thick
 - liquid 2-component epoxy glue
 - very small amounts of glue necessary, how to apply in a reproducible way?
 - distribution by pressure, what pattern to choose for larger areas?
 - first measurements indicate a glue thickness of <3µm (!)
 - issues from air bubbles and/or inhomogenious glue thickness?

Sensor's **Capacitively Coupled**

Results after 144 MRad

- The rate of detected particles depends on the high voltage bias, superposition of two effects:
 - Positive effect: The increase of HV bias leads to an increase of the depleted region depth => better detection efficiency.
 - Negative effect: The increase of the leakage current leads to a signal loss.
- Measured leakage current dependence on the high voltage bias
 - Leakage current depends on the volume of the depleted region

A. Rozanov

Results after 200 MRad

Preliminary irradiation results after ~200 Mrad (about IBL fluence!)

- significant radiation effects seen
 - discriminator output decreases with current settings after ~110 MRad
 - "lower" count rate, but physics still seen
 - high gain settings failing
 - Iow gain still works
 - strong leakage current increase (as expected): nA → ~mA
 - full characterisation difficult:
 - Iimited access
 - radiation vs. temperature effects

Results after 380 MRad and $\sim 8 \times 10^{15} \text{ n}_{eq}/\text{cm}^2$

Preliminary irradiation results:

- Output of the amplifier: the chip still works, particles are measured when the chip is in the beam
- Comparator characteristics
- many open questions, need better understanding

Future plans

- More pixel assemblies being put together
 - several unirradiated
 - a bump-bonded one in preparation at Glasgow for comparison
 - 4 neutron-irradiated (1e15 and 1e16 neq/cm2)
- current HV2FEI4: standard design blocks on purpose (see how far we can get with standards), obviously radiation effects seen
 - experience with FE chips: 180nm technology can be rad-hard
 - a modified HV2FEI4 chip was submitted in November
 - added guard rings for all NMOST
 - circular transistors at important positions
 - many other improvements
- further submissions are being discussed
 - dedicated to strip readout
 - optimised sub-strip pitch (40 µm? 20 µm?) in combination with z-resolution
 - dedicated to disks
 - square pixels preferred
 - 50x50 µm should be achievable with FE-I4
 - sensor candidate for "standard disks" and for very forward tracking

Case study: Very forward tracking

- Limitation to pseudorapidity of eta = 2.5 inappropriate wrt VBF/VBS
- Design studies ongoing for an extension to eta~4 (phase 2 upgrade)
 - physics: Higgs self-coupling, vector boson scattering
 - layout: acceptable area increase
 - sensor challenges: mass production, rad-hardness at small radii, square pixels/small eta pitch preferred \rightarrow HV-CMOS?

Conclusions

- HV-CMOS processes might yield radiation-hard, low-cost, improvedresolution, low-bias-voltage, low-mass sensors
- First test chips indicate rad-hardness up to at least 1e15 n_{eq}/cm²
 - general principles suggest rad-hardness up to full HL-LHC fluence
- Process can be used for
 - 'active' n-in-p sensors with capacitive coupling
 - drift-based MAPS chips (baseline for µ3e-Experiment)
- First active sensor prototypes being explored within ATLAS
 - capacitively coupled pixel sensors first results look promising

