
Real-time use of GPUs in
NA62 Experiment

Vincenzo Innocente, Felice Pantaleo (PH-
SFT)

Meeting on Concurrent Programming Models and Frameworks
10 October 2012

felice.pantaleo@cern.ch

First application: RICH

● ~17 m RICH
● 1 atm Neon
● Light focused by two mirrors on two spots equipped with ~1000 PMs each (pixel

18 mm)
● 3s p-m separation in 15-35 GeV/c, ~18 hits per ring in average
● ~100 ps time resolution, ~10 MHz events rate
● Time reference for trigger

 Mirror Mosaic (17 m focal length)

GPU trigger for RICH detector

GPU 12 hits
Best ring

Hits generated
NA62 - G4 MC

● Natively built for pattern
recognition problems

● First attempt: ring
reconstruction in RICH
detector.

It's a pilot project, very promising R&D!

felice.pantaleo@cern.ch

GPU as a L0 Trigger

Receive data

Filling appropriate
data structures

Transfer the whole structure to
GPU Global Memory

Kernel

Transfer the
results to the Host
and back to sub-

detectors

Using a "zero copy" intel modded
driver, we are able to copy data
from the NIC directly to the
userland

M
ax

 ti
m

e
O

(1
00

us
)

exploiting
concurrency

Crawford Algorithm description

Consider a circle of radius R, centered in (x0 , y0)and a list of points (xi , yi).

The following relations exist:

Reduction

● One reduction kernel is called per block, giving an array of results (one for each event)
● Must use sequential addressing instead of interleaved addressing to avoid Shared Memory

bank conflicts
● Time complexity is O(logN), cost is O(N*logN): not cost efficient
● Brent's theorem (algorithm cascading) suggests O(N/logN) threads:

○ Each thread does O(logN) sequential work
○ All O(N/logN) threads cooperate for O(logN) steps
○ New cost = O(N/logN * logN) = O(N)

Algorithm description - ctd

blo
ckI

dx.
x

threadIdx.x = hit[i]

t
h
r
e
a
d
I
d
x
.
y

=

r
i
n
g
[
j
]

Stream[k]

● Exploit the instruction-level
parallelism (i.e. pipelining
streams)

● This is usually done by
interlacing one stream
instructions with another
stream ones

● This cannot be done in
real-time without the
introduction of other
unknown latencies

● CPU hw-thread-level
parallelism is the solution

Stream Scheduler

Hardware on the workbench
First Machine
● GPU: NVIDIA Tesla C2050

○ 448 CUDA cores @ 1.15GHz
○ 3GB GDDR5 ECC @ 1.5GHz
○ CUDA CC 2.0 (Fermi Architecture)
○ PCIe 2.0 (effective bandwidth up to ~5GB/s)
○ CUDA Runtime v4.2, driver v295.20 (Feb '12)

● CPU: Intel® Xeon® Processor E5630 (released in
Q1'10)
○ 2 CPUs, 8 physical cores (16 HW-threads)

● SLC6, GNU C compiler v4.6.2

Hardware on the workbench
Second Machine
● GPU: NVIDIA GTX680

○ 1536 CUDA cores @ 1.01GHz
○ 2GB GDDR5 ECC @ 1.5GHz
○ CUDA CC 3.0 (Kepler Architecture)
○ PCIe 3.0 (effective bandwidth up to ~11GB/s)
○ CUDA Runtime v4.2, driver v295.20 (Feb '12)

● CPU: Intel® Ivy Bridge Processor i7-3770
(released in Q2 '12)
○ 1 CPUs, 4 physical cores (8 hw-threads) @3.4GHz

● Fedora 17, GNU C compiler v4.6.2

Results - Throughput
The throughput behaviour for a varying
number of events inside a packet is a typical
many-core device behaviour:

● constant time to process a varying
number of events, activating more SMs
as the packet size increases

● discrete oscillations due to the discrete
nature of the GPU

● saturation plateau (1.4GB/s and 2.7
GB/s)

The right choice of packet dimension is not
unique.
It depends on the maximum latency we don't
want to exceed and on the input rate of
events.

Considering that the maximum rate per sub-
detector (@10MHz particles rate) for NA62
experiment is ~500MB/s, I would consider the
throughput test PASSED

felice.pantaleo@cern.ch

Results - Latency
Latency pretty stable wrt event
size.

● A lower number of event
inside a package is better to
achieve a low latency.

● A larger number of event
guarantees a better
performance and a lower
overhead.

The choice of the packet size
depends on the technical
requirements.

felice.pantaleo@cern.ch

Results - Latency Stability

Technical Run GPU Demonstrator -
CHOD
Opportunity to run test on a running sub-
detector.
Aim: Applying time corrections in real-time
can improve time resolution.

Divide et Impera:
● Real-Time-Ready data structures

receiver implemented.
● Fast communication between

Network Interface buffers and Host
Memory (DNA driver) implemented

● A throughput/latency efficient kernel
implemented

Integrate the single unit tests

Due to the slabs
length, all the times
measured by PMTs
need to be
corrected.

CHOD - Kernel

● Assuming the conditions of
the detector to be stable,
the kernel is an increment
by a value taken from a
lookup table.

● Each element of the lookup
table contains the correction
specific of each rectangular
zone.

● Each zone correction is the
central point one.

Due to the slabs
length, all the times
measured by PMTs
need to be
corrected.

CUDA Architecture
Investigation on which memory to
use to store this matrix:

Global memory (read and write)
● Slow, but now with cache
● L1 cache designed for spatial re-

usage, not temporal (similar to
coalescing)

● It benefits if compiler detects that all
threads load same value (LDU PTX
ASM instruction, load uniform)

Texture memory
● Cache optimized for 2D spatial

access pattern
Constant memory

● Slow, but with cache (8 kb)
● Special “LoaD Uniform” (LDU)

instruction
Shared memory (48kB per SMX)

● Fast, but slightly different rules for
bank conflicts now

Registers (65536 32-bit registers per
SMX)

CHOD - Kernel 8x8

CHOD - Kernel 64x64

Texture memory is slower but way
more latency-stable than the others

Latency stable in time

Secondary peaks due only to caches hit/miss and
not time correlated

Saturation at ~3GB/s
(I/O bound)

30

25

20

15

0 2000 4000 6000 8000

● Connect the stand-alone parts together:
○ PF_RING receiver: IP stack removed

from kernel. Data goes directly to
userland

○ Scheduler: a thread-safe CUDA queue
takes data from the NIC ring buffer

○ Kernel: the tests succeeded with excellent
results for both the RICH and the CHOD.

● The complete system is expected to work
during the Technical Run in November

Conclusion

● Previous Concurrency Forum slides

● Real-Time Use of GPUs in NA62 Experiment
F. Pantaleo et al., 13th International Workshop on Cellular

Nanoscale Networks and their Applications (CERN-PH-EP-
2012-260)

Reference

https://docs.google.com/presentation/d/13wU76i1B_GNyCPDK8_sJYVwq_GRoPMiNdZlrnXAovXo/edit
http://cdsweb.cern.ch/record/1476079?ln=en
http://cdsweb.cern.ch/record/1476079?ln=en
http://cdsweb.cern.ch/record/1476079?ln=en

Q ∧ A

Backup

● FCNC process forbidden
at tree level
● Short distance contribution
dominated by Z penguins
and box diagrams
● Negligible contribution
from u quark, small
contribution from c quark
● Very small BR due to the
CKM top coupling → λ5

α

γ β

ρ

η

K +→π +νν

K
0 →

π
0 ν

ν

KL→μ+μ- charm

● Amplitude well predicted in SM
(measurement of Vtd) [see E.Stamou]

● Residual error in the BR due to parametric
uncertainties (mainly due to charm
contributions): ~7%
● Alternative way to measure the Unitarity
Triangle with smaller theoretical uncertainty

GSD/G Irr. theory err. BR x 10-11

KL→πνν >99% 1% 3

K+→π+νν 88% 3% 8

KL→π0e+e- 38% 15% 3.5

KL→π0μ+μ- 28% 30% 1.5

Experimental technique

● Kaon decay in-flight from an unseparated 75 GeV/c hadron beam, produced
with 400 GeV/c protons from SPS on a fixed berilium target
● ~800 MHz hadron beam with ~6% kaons
● The pion decay products in the beam remain in the beam pipe
● Goal: measurement of O(100) events in two years of data taking with % level of
systematics
● Present result (E787+E949): 7 events, total error of ~65%.

Kinematic rejection

● The missing mass will be used to identify two regions with lower background

level

● Very important to have high resolution missing mass reconstruction

● Measurement of kaon and pion momenta

● Very light spectrometers to keep the multiple scattering as low as possible.

Not kinematically constrained background

● ~8% of the Kaon decays is not
kinematically constrained.
● Rejection is based solely on veto
and particle identification.
● The veto and PID are exploited to
reach the 108 rejection factor in the
kinematical constraint background

Veto system requirements:
● Large angle (8.5-50 mrad): inefficiency <10-4 for gamma between 100
MeV and 35 GeV
● Forward veto (1-8.5 mrad): inefficiency <10-5 for E>10 GeV
● Small angle (<1 mrad): <10-3 for E>10 GeV

PID system requirements:
● Positive kaon identification in the hadron beam
● π-μ separation: 10-3 mis-identification probability

NA62 Trigger

● L0 selection: RICH+!LKR+!
MUV3

● RICH: hit multiplicity positive
signal

● !LKR: no 2 clusters more than
30 cm apart

● !MUV3: no signal in MUV3

Initial rate
(MHz)

After L 0
(MHz)

ππ0 1.9 0.22

μν 5.7 0.04

πππ 0.5 0.1

πππ0 0.16 0.002

π0eν 0.3 0.05

μνπ0 0.2 0.002

TOT 6.7 0.4

πνν (eff.) 82%

● Very good time resolution is
required to avoid random veto

● At the software levels a more
complete analysis will be
performed (missing mass, Z
vertex,…)

Input (max) Output (max) latency

L0 hw,sync ~10 MHz ~ 1 MHz 1 ms

L1 soft,async ~ 1 MHz ~ 100 kHz undefined

L2 soft,async ~ 100 kHz O(kHz) undefined

NA62 sensitivity

K+→π+νν (signal) 55 events/year
K+→π+π0 4.3% (2.3 evts)
K+→μ+ν 2.2% (1.2 evts)
K+→π+π-eν <3% (1.7 evts)
3 tracks <1.5% (0.8 evts)
K+→π+π0γ 2% (1.1 evts)
K+→μ+νγ 0.7% (0.4 evts)
others negligible
Expected bkg <13.5% (7.4 evts)

● 4.8·1012 decays per year
● x50 wrt NA48 flux (same amount of protons from SPS)
● π0 rejection 2·108

● O(10%) signal acceptance
● 100% trigger efficiency assumed

The NA62 TDAQ system

L0 trigger

Trigger primitives
Data

CDR

O(KHz)

E
B

GigaEth SWITCH

L1/L2
 PC

RICH MUV CEDAR LKRSTRAWS LAV

L0TP L0
1 MHz

1 MHz

10 MHz

10 MHz

L1/L2
 PC

L1/L2
 PC

L1/L2
 PC

L1/L2
 PC

L1/L2
 PC

L1/L2
 PC

100 kHz

L1 trigger

L1/2

L0: Hardware
synchronous
level. 10 MHz to 1
MHz. Max latency
1 ms.
L1: Software
level. “Single
detector”. 1 MHz
to 100 kHz
L2: Software
level. “Complete
information level”.
100 kHz to few
kHz.

GPU as a Level0 trigger

INTEL PRO/1000
QUAD GBE

PCI-Ex
x16

4 GB/s
(20 MHz)*

8 GB/s
(40 MHz)*

PCI-E gen2
x16

100GB/s
(500 MHz)*

TESLA
GPU

V
R
A
M

R
A
M

CPU

CPU

30 GB/s
(150 MHz)*

FE Digitization + buffer +
(trigger primitives) PCs+GPU

PCs+GPUL0

L1
“quasi-triggerless” with GPUs

● The idea: exploit GPUs to
perform high quality analysis at
trigger level
● GPU architecture: massive
parallel processor SIMD
● "Easy" at L1/2, challenging at
L0
● Real benefits: increase the
physics potential of the
experiment at very low cost!
● Profit from continuative
developments in technology for
free (Video Games,…)

Hardware on the workbench
● GPU: NVIDIA Tesla C2050

○ 448 CUDA cores @ 1.15GHz
○ 3GB GDDR5 ECC @ 1.5GHz
○ CUDA CC 2.0 (Fermi Architecture)
○ PCIe 2.0 (effective bandwidth up to ~5GB/s)
○ CUDA Runtime v4.1, driver v295.20 (Feb '12)

● CPU: Intel® Xeon® Processor E5630
(released in Q1 '10)
○ 2 CPUs, 8 total cores (16 threads SMT) @2.53GHz

● SLC6, GNU C compiler v4.4.6

Check if possible to fake the ECC
on GTX card between spills

GPU trigger

GPU 12 hits
Best ring

Hits generated
NA62 - G4 MC

● Natively built for pattern
recognition problems

● First attempt: ring
reconstruction in RICH
detector.

● Several algorithms tested → best
result 5 ns/per ring .

● Long latency in data transfer from PC
to Video Card → avoided by
transferring a packet of 1000 events.

● Total processing time well below 1
ms (per 1000 events) in a single PC!

● Pilot project, very promising R&D.

GPU

Data arrive

Transfer in the
RAM

Transfer of a Packet of data in
GPU global memory

Processing

Send back to RAM
the results

… protocol stack possibly
managed in the receiver card

… the non deterministic behavior
of the CPU should be avoided
(real time OS)

… the PCI-ex gen2 is fast enough.
Concurrent transfer during
processing.

… as fast as possible!!!

… done!

M
ax

 1
00

 u
s

exploiting
concurrency

Multi-trigger packets
● Sources asynchronously produce L0 Trigger Primitive information
● L0 Trigger Processor time-matches the primitives and possibly issues (synchronous) L0 triggers

with a fixed latency
● Maximum latency 1ms (possible extension in the future)
● L0 Trigger Primitives are sent via dedicated ethernet links, packed into MTPs (see below for a

possible solution)
● Expected peak bandwidth from single sub-detector ~500MB/s (@10MHz expected particle rate)

Are the GPUs ready for this?

Main issues:
1. Memory throughput sufficient?
2. How to solve overhead problems?
3. What about the maximum latency?

Hit Counting Problem
Suppose we have a detector with
NCHANS channels, each one with a fixed
threshold[i].

A particle crosses the detector (Event)
activating the channel id and releasing
the energy adc

Each channel is then activated iff the
threshold is exceeded, i.e.:

ok[i] = Event.adc[i] > threshold[Event.id[i]]

We don't know, until an event is generated, how many and which channels are hit and how much energy
has been released in that channel.
The minimal output from the GPU is the identification of the Event if it triggered, nothing if not.
This is a first very (very) simple algorithm to use as benchmark, actually the most trivial possible!

Then, the Event is considered
"triggered" if the number of "OKs"
exceeds a second threshold TH.

Hit Counting Problem - 2

We have to make the first choice:
How do we transfer data on the GPU?

a. shall we move everything as it comes into the
buffer?

b. shall we wait until a "good" size has been reached,
send everything to the GPU and then unpack there?

c. shall we organize data first so that they are easier to
read, and elaborate? (see memory coalescence,
SoA vs AoS.....)

Hit Counting Problem - 3

We cannot move data as they come for several reasons:
● overhead (reduced collecting more package, i.e. option

b)
● not coalesced access pattern
● many threads idle due to matrix-shaped thread

organization in the 3-dimensional grid

Why doesn't it perform as it
should?

Organization of data: AoS vs SoA

● Data come in Arrays of Structures:

● Compilers and Hardware digest Structure of
Arrays a lot better than AoS (+60% gain in
hcp):

Layout

id[i]:

adc[i]:

i: 0 1 2 3

ok[i]:

reduce(length[i],
offset[i]):

bigReduce:

hits: 0 1 3

length[i]:

offset[i]:

0 1 2 3

0 1 2 3

id[i]:

adc[i]:

length[i]:

offset[i]:

0 1 2 3

0 1 2 3

result > THRESHOLD? 1 0 11 157 18 7255

hits: 0 1 3

Reduction

● Must use sequential addressing instead of interleaved addressing to avoid Shared Memory
bank conflicts

● Time complexity is O(logN), cost is O(N*logN): not cost efficient
● Brent's theorem (algorithm cascading) suggests O(N/logN) threads:

○ Each thread does O(logN) sequential work
○ All O(N/logN) threads cooperate for O(logN) steps
○ New cost = O(N/logN * logN) = O(N)

Concurrent Memcpy - Kernel
The main bottleneck is the PCIe 2 (real bandwidth is
5GB/s vs theoric 8GB/s)
While waiting for PCIe 3 (double bandwidth), we can
exploite streaming.
Streaming allows overlapping between kernel execution
time and transfer time of independent data between CPU
and GPUs.
The flow of the application has to be reorganized using 3
concurrent streams (3 is the minimum: 1 for reading, 1 for
kernel execution, 1 for reading. We can actually use more
but it's just an exercise and we wanted to be pessimistic):

● 3X memory occupation (memory does not seem to
be a problem)

● Events must be packed in Multi-Event Packets, and
partitioned in 3 buffers (circular buffers or whatever)

Memory Allocation
Avoid, when possible, repeated dynamic
allocation/deallocation of memory:
the time spent doing cudaMalloc() or cudaFree()
is t ~ 0.1ms.

Allocate the maximum possible size at the beginning
of the program and then just copy from/to memory
locations using data inside the arrays length[] and
offset[].

Modern NVIDIA Tesla Cards can have up to 6GB
GDDR5 on board.

Preliminary Results - Throughput
The throughput behaviour for a varying
number of events inside a packet is a typical
many-core device behaviour:

● constant time to process a varying
number of events, activating more SMs
as the packet size increases

● discrete oscillations due to the discrete
nature of the GPU

● saturation plateau (1.2GB/s)

The right choice of packet dimension is not
unique.
It depends on the maximum latency we don't
want to exceed and on the input rate of
events.

Considering that the maximum rate per
subdetector (@10MHz particles rate) for NA62
experiment is O(500MB/s), I would consider
the throughput test PASSED

Preliminary Results - Latency
Latency pretty stable wrt
event size.

A lower number of event
inside a package is better
to achieve a low latency.
A larger number of event
guarantees a better
performance and lower
overhead.

The choice depends on
the technical
requirements.

Preliminary Results - Latency
Stability

Preliminary Results - Latency
Stability

Preliminary Results - Latency
Stability

Latency Test PASSED

First application: RICH

● ~17 m RICH
● 1 Atm Neon
● Light focused by two mirrors on two spots equipped with ~1000 PMs each (pixel

18 mm)
● 3s p-m separation in 15-35 GeV/c, ~18 hits per ring in average
● ~100 ps time resolution, ~10 MHz events rate
● Time reference for trigger

 Mirror Mosaic (17 m focal length)

Algorithms for single ring search (1)

● DOMH/POMH: Each PM
(1000) is considered as the
center of a circle. For each
center an histogram is
constructed with the
distances between center and
hits.

● HOUGH: Each hit is the
center of a test circle with
a given radius. The ring
center is the best matching
point of the test circles.
Voting procedure in a 3D
parameters space

Algorithms for single ring search (2)

● TRIPL: In each thread the center of the
ring is computed using three points
(“triplets”). For the same event, several
triplets (but not all the possible) are
examined at the same time. The final
center is obtained by averaging the
obtained center positions.

● MATH: Translation of the ring to
centroid. In this system a least square
method can be used. The circle
condition can be reduced to a linear
system , analytically solvable, without
any iterative procedure.

Processing time

●Using Monte Carlo data, the
algorithms are compared on Tesla
C1060
●For packets of >1000 events, the
MATH algorithm processing time is
around 50 ns per event

●The performance on DOMH (the
most resource-dependent
algorithm) is compared on several
GPUs
●The gain due to different
generation of video cards can be
clearly recognized.

GPU@ L0/L1 RICH trigger

●After the L0: ~50% 1 track events, ~50% 3
tracks events
●Most of the 3 tracks, which are background,
have max 2 rings per spot
●Standard multiple rings fit methods are not
suitable for us, since we need:
●Trackless
●Non iterative
●High resolution
●Fast: ~1 us (1 MHz input rate)

●New approach→ use the Ptolemy’s theorem (from the first book of the
Almagest)

 “A quadrilater is cyclic (the vertex lie on a circle) if and only
 if is valid the relation:
 AD*BC+AB*DC=AC*BD “

Almagest algorithm description

Almagest algorithm results

Almagest for many rings

Reduction - Interleaved addressing

Brent's theorem
Brent's theorem specifies for a sequential
algorithm with:
● t time steps
● a total of m operations,
that a run time T is definitely possible on a
shared memory machine with p processors.

Note: The Brent's theorem does not take into account
the possibility of additional improvements due to level
shift in the original schedule.

Brent's Theorem

Suppose we want to sum an array.
We could step through the array, adding each value in turn
to an accumulator. In pseudocode:
for (i=0;i < length(a); i++) { sum = sum + a(i); }

Using this algorithm, each add operation depends on the
result of the previous one, forming a chain of length n, thus:

t = n
There are n operations, so

 m = n
No matter how many processors are available, this
algorithm will take time n.

Brent's Theorem
Now consider the adding the array recursively:
sum(a) = ((A0 + A1) + (A2 + A3)) + ((A4 + A5) + (A6 + A7))...

We can add A2 to A3 without needing to know what A0 + A1 is.

To calculate the sum from 0-3, we only need the results of A0 +
A1, and A2 + A3.

Instead of one chain of length 4, we have many chains of length
2.
For an array of length n, the longest chain(s) will be of length log
(n).
t = log(n). m = n (as before).

Brent's Theorem

This tells us many useful things about the algorithm:

● No matter how many processors used, there can be no implementation of
this algorithm that runs faster than O(log(n)).

● If we have n processors, the algorithm can be implemented in log(n) time

● If we have log(n) processors, the algorithm can be implemented in 2log(n)
time (asymptotically this is the same as log(n) time)

● If we have one processor, the algorithm can be implemented in n time.

