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First application: RICH

● ~17 m RICH 
● 1 atm Neon
● Light focused by two mirrors on two spots equipped with ~1000 PMs each (pixel 

18 mm)
● 3s p-m separation in 15-35 GeV/c, ~18 hits per ring in average
● ~100 ps time resolution, ~10 MHz events rate
● Time reference for trigger

    Mirror Mosaic (17 m focal length)



GPU trigger for RICH detector

 

GPU 12 hits
Best ring

Hits generated 
NA62 - G4 MC

● Natively built for pattern 
recognition problems

● First attempt: ring 
reconstruction  in RICH 
detector.

It's a pilot project, very promising R&D!

felice.pantaleo@cern.ch



GPU as a L0 Trigger

 

Receive data

Filling appropriate 
data structures 

Transfer the whole structure to 
GPU Global Memory

Kernel

Transfer the 
results to the Host 
and back to sub-

detectors

Using a "zero copy" intel modded 
driver, we are able to copy data 
from the NIC directly to the 
userland
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Crawford Algorithm description

 

Consider a circle of radius R, centered in (x0 , y0 )and a list of points (xi , yi).

The following relations exist:



Reduction

● One reduction kernel is called per block, giving an array of results (one for each event) 
● Must use sequential addressing instead of interleaved addressing to avoid Shared Memory 

bank conflicts
● Time complexity is O(logN), cost is O(N*logN): not cost efficient
● Brent's theorem (algorithm cascading) suggests O(N/logN) threads:

○ Each thread does O(logN) sequential work
○ All O(N/logN) threads cooperate for O(logN) steps
○ New cost = O(N/logN * logN) = O(N) 



Algorithm description - ctd

blo
ckI

dx.
x

threadIdx.x = hit[i]

t
h
r
e
a
d
I
d
x
.
y
 
=
 
r
i
n
g
[
j
]

Stream[k]



● Exploit the instruction-level 
parallelism (i.e. pipelining 
streams)

● This is usually done by 
interlacing one stream 
instructions with another 
stream ones

● This cannot be done in 
real-time without the 
introduction of other 
unknown latencies

● CPU hw-thread-level 
parallelism is the solution

Stream Scheduler



Hardware on the workbench
First Machine
● GPU: NVIDIA Tesla C2050

○ 448 CUDA cores @ 1.15GHz
○ 3GB GDDR5 ECC @ 1.5GHz
○ CUDA CC 2.0 (Fermi Architecture)
○ PCIe 2.0 (effective bandwidth up to ~5GB/s)
○ CUDA Runtime v4.2, driver v295.20 (Feb '12)

● CPU: Intel® Xeon® Processor E5630 (released in 
Q1'10)
○ 2 CPUs, 8 physical cores (16 HW-threads)

● SLC6, GNU C compiler v4.6.2



Hardware on the workbench
Second Machine
● GPU: NVIDIA GTX680

○ 1536 CUDA cores @ 1.01GHz
○ 2GB GDDR5 ECC @ 1.5GHz
○ CUDA CC 3.0 (Kepler Architecture)
○ PCIe 3.0 (effective bandwidth up to ~11GB/s)
○ CUDA Runtime v4.2, driver v295.20 (Feb '12)

● CPU: Intel® Ivy Bridge Processor i7-3770 
(released in Q2 '12)
○ 1 CPUs, 4 physical cores (8 hw-threads) @3.4GHz

● Fedora 17, GNU C compiler v4.6.2



Results - Throughput
The throughput behaviour for a varying 
number of events inside a packet is a typical 
many-core device behaviour:

● constant time to process a varying 
number of events, activating more SMs 
as the packet size increases

● discrete oscillations due to the discrete 
nature of the GPU

● saturation plateau (1.4GB/s and 2.7
GB/s )

The right choice of packet dimension is not 
unique. 
It depends on the maximum latency we don't 
want to exceed and on the input rate of 
events.

Considering that the maximum rate per sub-
detector (@10MHz particles rate) for NA62 
experiment is ~500MB/s, I would consider the 
throughput test PASSED

felice.pantaleo@cern.ch



Results - Latency
Latency pretty stable wrt event 
size.

● A lower number of event 
inside a package is better to 
achieve a low latency. 

● A larger number of event 
guarantees a better 
performance and a lower 
overhead.

The choice of the packet size 
depends on the technical 
requirements.

felice.pantaleo@cern.ch



Results - Latency Stability



Technical Run GPU Demonstrator - 
CHOD
Opportunity to run test on a running sub-
detector.
Aim: Applying time corrections in real-time 
can improve time resolution.

Divide et Impera: 
● Real-Time-Ready data structures 

receiver implemented.
● Fast communication between 

Network Interface buffers and Host 
Memory (DNA driver) implemented

● A throughput/latency efficient kernel 
implemented

Integrate the single unit tests

Due to the slabs 
length, all the times 
measured by PMTs 
need to be 
corrected. 



CHOD - Kernel

● Assuming the conditions of 
the detector to be stable, 
the kernel is an increment 
by a value taken from a  
lookup table.

● Each element of the lookup 
table contains the correction 
specific of each rectangular 
zone.

● Each zone correction is the 
central point one.

Due to the slabs 
length, all the times 
measured by PMTs 
need to be 
corrected. 



CUDA Architecture
Investigation on which memory to 
use to store this matrix:

Global memory (read and write)
● Slow, but now with cache
● L1 cache designed for spatial re-

usage, not temporal (similar to 
coalescing)

● It benefits if compiler detects that all 
threads load same value (LDU PTX 
ASM instruction, load uniform)

Texture memory 
● Cache optimized for 2D spatial 

access pattern
Constant memory

● Slow, but with cache (8 kb)
● Special “LoaD Uniform” (LDU) 

instruction
Shared memory (48kB per SMX)

● Fast, but slightly different rules for 
bank conflicts now

Registers (65536 32-bit registers per 
SMX)



CHOD - Kernel 8x8



CHOD - Kernel 64x64

Texture memory is slower but way 
more latency-stable than the others



Latency stable in time

Secondary peaks due only to caches hit/miss and 
not time correlated



Saturation at ~3GB/s 
(I/O bound)
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● Connect the stand-alone parts together:
○  PF_RING receiver: IP stack removed 

from kernel. Data goes directly to 
userland

○ Scheduler: a thread-safe CUDA queue 
takes data from the NIC ring buffer

○ Kernel: the tests succeeded with excellent 
results for both the RICH and the CHOD.

● The complete system is expected to work 
during the Technical Run in November

Conclusion



● Previous Concurrency Forum slides

● Real-Time Use of GPUs in NA62 Experiment
F. Pantaleo et al., 13th International Workshop on Cellular 

Nanoscale Networks and their Applications (CERN-PH-EP-
2012-260)

Reference

https://docs.google.com/presentation/d/13wU76i1B_GNyCPDK8_sJYVwq_GRoPMiNdZlrnXAovXo/edit
http://cdsweb.cern.ch/record/1476079?ln=en
http://cdsweb.cern.ch/record/1476079?ln=en
http://cdsweb.cern.ch/record/1476079?ln=en
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Backup



 

● FCNC process forbidden 
at tree level
● Short distance contribution 
dominated by Z penguins 
and box diagrams
● Negligible contribution 
from u quark, small 
contribution from c quark
● Very small BR due to the 
CKM top coupling → λ5 

 
  

α

γ β

ρ

η

K +→π +νν

K
0 →

π
0 ν

ν

KL→μ+μ- charm

● Amplitude well predicted in SM 
(measurement of Vtd) [see E.Stamou]

● Residual error in the BR due to parametric 
uncertainties (mainly due to charm 
contributions): ~7%
● Alternative way to measure the Unitarity 
Triangle with smaller theoretical uncertainty  

GSD/G Irr. theory err. BR x 10-11

KL→πνν >99% 1% 3

K+→π+νν 88% 3% 8

KL→π0e+e- 38% 15% 3.5

KL→π0μ+μ- 28% 30% 1.5



Experimental technique 

 

● Kaon decay in-flight from an unseparated 75 GeV/c hadron beam, produced 
with 400 GeV/c protons from SPS on a fixed berilium target
● ~800 MHz hadron beam with ~6% kaons
● The pion decay products in the beam remain in the beam pipe 
● Goal: measurement of O(100) events in two years of data taking with % level of 
systematics
● Present result (E787+E949): 7 events, total error of ~65%. 



Kinematic rejection

 

● The missing mass will be used to identify two regions with lower background 

level

● Very important to have high resolution missing mass reconstruction 

● Measurement of kaon and pion momenta

● Very light spectrometers to keep the multiple scattering as low as possible.



Not kinematically constrained background

 

● ~8% of the Kaon decays is not 
kinematically constrained.
● Rejection is based solely on veto 
and particle identification.
● The veto and PID are exploited to 
reach the 108  rejection factor in the 
kinematical constraint background

Veto system requirements:
● Large angle (8.5-50 mrad): inefficiency <10-4 for gamma between 100 
MeV and 35 GeV
● Forward veto (1-8.5 mrad): inefficiency <10-5  for E>10 GeV  
● Small angle (<1 mrad): <10-3 for E>10 GeV

PID system requirements:
● Positive kaon identification in the hadron beam 
● π-μ separation: 10-3  mis-identification probability



NA62 Trigger

 

● L0 selection: RICH+!LKR+!
MUV3

● RICH: hit multiplicity positive 
signal

● !LKR: no 2 clusters more than 
30 cm apart

● !MUV3: no signal in MUV3

Initial rate 
(MHz)

After L 0 
(MHz)

ππ0 1.9 0.22

μν 5.7 0.04

πππ 0.5 0.1

πππ0 0.16 0.002

π0eν 0.3 0.05

μνπ0 0.2 0.002

TOT 6.7 0.4

πνν (eff.) 82%

●  Very good time resolution is 
required to avoid random veto

●  At the software levels a more 
complete analysis will be 
performed (missing mass, Z 
vertex,…) 

Input (max) Output (max) latency

L0 hw,sync ~10 MHz ~ 1 MHz 1 ms

L1 soft,async ~ 1 MHz ~ 100 kHz undefined

L2 soft,async ~ 100 kHz O(kHz) undefined



NA62 sensitivity 

 

K+→π+νν   (signal) 55 events/year
K+→π+π0 4.3%   (2.3 evts)
K+→μ+ν 2.2%   (1.2 evts)
K+→π+π-eν <3%    (1.7 evts)
3 tracks <1.5%  (0.8 evts)
K+→π+π0γ 2%       (1.1 evts)
K+→μ+νγ 0.7%    (0.4 evts)
others negligible
Expected bkg <13.5%  (7.4 evts)

● 4.8·1012 decays per year 
● x50 wrt NA48 flux (same amount of protons from SPS)
● π0 rejection 2·108

● O(10%) signal acceptance
● 100% trigger efficiency assumed



The NA62 TDAQ system

 

L0 trigger

Trigger primitives
Data

CDR

O(KHz)

E
B

GigaEth SWITCH

L1/L2
 PC

RICH MUV CEDAR LKRSTRAWS LAV

L0TP L0
1 MHz

1 MHz

10 MHz

10 MHz

L1/L2
 PC

L1/L2
 PC

L1/L2
 PC

L1/L2
 PC

L1/L2
 PC

L1/L2
 PC

100 kHz

L1 trigger

L1/2

L0: Hardware 
synchronous 
level. 10 MHz to 1 
MHz. Max latency 
1 ms.
L1: Software 
level. “Single 
detector”. 1 MHz 
to 100 kHz
L2: Software 
level. “Complete 
information level”. 
100 kHz to few 
kHz.



GPU as a Level0 trigger 

 

INTEL PRO/1000 
QUAD GBE

PCI-Ex    
x16

4 GB/s
(20 MHz)*

8 GB/s
(40 MHz)*

PCI-E gen2   
x16 

100GB/s
(500 MHz)*

TESLA
GPU

V
R
A
M

R
A
M

CPU

CPU

30 GB/s
(150 MHz)*

FE Digitization + buffer + 
(trigger primitives) PCs+GPU

PCs+GPUL0

L1
“quasi-triggerless” with GPUs

● The idea: exploit GPUs to 
perform high quality analysis at 
trigger level
● GPU architecture: massive 
parallel processor SIMD 
● "Easy" at L1/2, challenging at 
L0
● Real benefits: increase the 
physics potential of the 
experiment at very low cost!
● Profit from continuative 
developments in technology for 
free (Video Games,…)  



Hardware on the workbench
● GPU: NVIDIA Tesla C2050

○ 448 CUDA cores @ 1.15GHz
○ 3GB GDDR5 ECC @ 1.5GHz
○ CUDA CC 2.0 (Fermi Architecture)
○ PCIe 2.0 (effective bandwidth up to ~5GB/s)
○ CUDA Runtime v4.1, driver v295.20 (Feb '12)

● CPU: Intel® Xeon® Processor E5630 
(released in Q1 '10)
○ 2 CPUs, 8 total cores (16 threads SMT) @2.53GHz

● SLC6, GNU C compiler v4.4.6

Check if possible to fake the ECC
on GTX card between spills



GPU trigger

 

GPU 12 hits
Best ring

Hits generated 
NA62 - G4 MC

● Natively built for pattern 
recognition problems

● First attempt: ring 
reconstruction  in RICH 
detector.

● Several algorithms tested → best 
result 5 ns/per ring .

● Long latency in data transfer from PC 
to Video Card → avoided by 
transferring a packet of 1000 events.

● Total processing time well below 1 
ms (per 1000 events) in a single PC!

● Pilot project, very promising R&D.



GPU

 

Data arrive

Transfer in the 
RAM

Transfer of a Packet of data in 
GPU global memory

Processing

Send back to RAM 
the results

… protocol stack possibly 
managed in the receiver card

… the non deterministic behavior 
of the CPU should be avoided 
(real time OS)

… the PCI-ex gen2 is fast enough. 
Concurrent transfer during 
processing.

… as fast as possible!!!

… done!
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Multi-trigger packets
● Sources asynchronously produce L0 Trigger Primitive information
● L0 Trigger Processor time-matches the primitives and possibly issues (synchronous) L0 triggers 

with a fixed latency
● Maximum latency 1ms (possible extension in the future)
● L0 Trigger Primitives are sent via dedicated ethernet links, packed into MTPs (see below for a 

possible solution)
● Expected peak bandwidth from single sub-detector  ~500MB/s  (@10MHz expected particle rate)



Are the GPUs ready for this?

Main issues:
1. Memory throughput sufficient?
2. How to solve overhead problems?
3. What about the maximum latency?



Hit Counting Problem
Suppose we have a detector with 
NCHANS channels, each one with a fixed 
threshold[i].

A particle crosses the detector (Event) 
activating the channel id and releasing 
the energy adc  

Each channel is then activated iff the 
threshold is exceeded, i.e.:

ok[i] = Event.adc[i] > threshold[Event.id[i]]

We don't know, until an event is generated, how many and which channels are hit and how much energy 
has been released in that channel. 
The minimal output from the GPU is the identification of the Event if it triggered, nothing if not.
This is a first very (very) simple algorithm to use as benchmark, actually the most trivial possible!

Then, the Event is considered 
"triggered" if the number of "OKs" 
exceeds a second threshold TH.



Hit Counting Problem - 2

We have to make the first choice:
How do we transfer data on the GPU?

a. shall we move everything as it comes into the 
buffer?

b. shall we wait until a "good" size has been reached, 
send everything to the GPU and then unpack there?

c. shall we organize data first so that they are easier to 
read, and elaborate? (see memory coalescence, 
SoA vs AoS.....)



Hit Counting Problem - 3

We cannot move data as they come for several reasons:
● overhead (reduced collecting more package, i.e. option 

b)
● not coalesced access pattern
● many threads idle due to matrix-shaped thread 

organization in the 3-dimensional grid

Why doesn't it perform as it 
should?



Organization of data: AoS vs SoA

● Data come in Arrays of Structures:

● Compilers and Hardware digest Structure of 
Arrays a lot better than AoS (+60% gain in 
hcp):



Layout

id[i]:

adc[i]:

i: 0 1 2 3

ok[i]:

reduce(length[i], 
offset[i]):

bigReduce:

hits: 0 1 3

length[i]:

offset[i]:

0 1 2 3

0 1 2 3

id[i]:

adc[i]:

length[i]:

offset[i]:

0 1 2 3

0 1 2 3

result > THRESHOLD? 1 0 11 157 18 7255

hits: 0 1 3



Reduction

● Must use sequential addressing instead of interleaved addressing to avoid Shared Memory 
bank conflicts

● Time complexity is O(logN), cost is O(N*logN): not cost efficient
● Brent's theorem (algorithm cascading) suggests O(N/logN) threads:

○ Each thread does O(logN) sequential work
○ All O(N/logN) threads cooperate for O(logN) steps
○ New cost = O(N/logN * logN) = O(N) 



Concurrent Memcpy - Kernel
The main bottleneck is the PCIe 2 (real bandwidth is 
5GB/s vs theoric 8GB/s)
While waiting for PCIe 3 (double bandwidth), we can 
exploite streaming. 
Streaming allows overlapping between kernel execution 
time and transfer time of independent data between CPU 
and GPUs.
The flow of the application has to be reorganized using 3 
concurrent streams (3 is the minimum: 1 for reading, 1 for 
kernel execution, 1 for reading. We can actually use more 
but it's just an exercise and we wanted to be pessimistic):

● 3X memory occupation (memory does not seem to 
be a problem)

● Events must be packed in Multi-Event Packets, and 
partitioned in 3 buffers (circular buffers or whatever)



Memory Allocation
Avoid, when possible, repeated dynamic 
allocation/deallocation of memory:
the time spent doing cudaMalloc() or cudaFree() 
is t ~ 0.1ms.

Allocate the maximum possible size at the beginning 
of the program and then just copy from/to memory 
locations using data inside the arrays length[] and 
offset[].

Modern NVIDIA Tesla Cards can have up to 6GB 
GDDR5 on board. 



Preliminary Results - Throughput
The throughput behaviour for a varying 
number of events inside a packet is a typical 
many-core device behaviour:

● constant time to process a varying 
number of events, activating more SMs 
as the packet size increases

● discrete oscillations due to the discrete 
nature of the GPU

● saturation plateau (1.2GB/s)

The right choice of packet dimension is not 
unique. 
It depends on the maximum latency we don't 
want to exceed and on the input rate of 
events.

Considering that the maximum rate per 
subdetector (@10MHz particles rate) for NA62 
experiment is O(500MB/s), I would consider 
the throughput test PASSED



Preliminary Results - Latency
Latency pretty stable wrt 
event size.

A lower number of event 
inside a package is better 
to achieve a low latency. 
A larger number of event 
guarantees a better 
performance and lower 
overhead.

The choice depends on 
the technical 
requirements.



Preliminary Results - Latency 
Stability



Preliminary Results - Latency 
Stability



Preliminary Results - Latency 
Stability

Latency Test PASSED



 

First application: RICH

● ~17 m RICH 
● 1 Atm Neon
● Light focused by two mirrors on two spots equipped with ~1000 PMs each (pixel 

18 mm)
● 3s p-m separation in 15-35 GeV/c, ~18 hits per ring in average
● ~100 ps time resolution, ~10 MHz events rate
● Time reference for trigger

    Mirror Mosaic (17 m focal length)



Algorithms for single ring search (1)

 

● DOMH/POMH: Each PM 
(1000) is considered as the 
center of a circle. For each 
center an histogram is 
constructed with the 
distances between center and 
hits.

● HOUGH: Each hit is the 
center of a test circle with 
a given radius. The ring 
center is the best matching 
point of the test circles. 
Voting procedure in a 3D 
parameters space 



Algorithms for single ring search (2)

 

● TRIPL: In each thread the center of the 
ring is computed using three points 
(“triplets”). For the same event, several 
triplets (but not all the possible) are 
examined at the same time. The final 
center is obtained by averaging the 
obtained center positions.

● MATH: Translation of the ring to 
centroid. In this system a least square 
method can be used. The circle 
condition can be reduced to a linear 
system , analytically solvable, without 
any iterative procedure.



Processing time

●Using Monte Carlo data, the 
algorithms are compared on Tesla 
C1060
●For packets of >1000 events, the 
MATH algorithm processing time is 
around 50 ns per event

 

●The performance on DOMH (the 
most resource-dependent 
algorithm) is compared on several 
GPUs
●The gain due to different 
generation of video cards can be 
clearly recognized.



GPU@ L0/L1 RICH trigger

●After the L0: ~50% 1 track events, ~50% 3 
tracks events
●Most of the 3 tracks, which are background, 
have max 2 rings per spot
●Standard multiple rings fit methods are not 
suitable for us, since we need:
●Trackless
●Non iterative
●High resolution
●Fast: ~1 us (1 MHz input rate)

 

●New approach→ use the Ptolemy’s theorem (from the first book of the 
Almagest)

      “A quadrilater is cyclic (the vertex lie on a circle) if and only 
          if is valid the relation:
                                  AD*BC+AB*DC=AC*BD  “
  



  

Almagest algorithm description



Almagest algorithm results

 



Almagest for many rings

 



Reduction - Interleaved addressing 



Brent's theorem
Brent's theorem specifies for a sequential 
algorithm with:
●  t time steps
● a total of m operations, 
that a run time T is definitely possible on a 
shared memory machine with p processors. 

Note: The Brent's theorem does not take into account 
the possibility of additional improvements due to level 
shift in the original schedule.



Brent's Theorem

Suppose we want to sum an array. 
We could step through the array, adding each value in turn 
to an accumulator. In pseudocode:
for (i=0;i < length(a); i++) { sum = sum + a(i); }

Using this algorithm, each add operation depends on the 
result of the previous one, forming a chain of length n, thus: 

t = n
There are n operations, so

 m = n
No matter how many processors are available, this 
algorithm will take time n.



Brent's Theorem
Now consider the adding the array recursively: 
sum(a) = ((A0 + A1) + (A2 + A3)) + ((A4 + A5) + (A6 + A7))...

We can add A2 to A3 without needing to know what A0 + A1 is. 

To calculate the sum from 0-3, we only need the results of A0 + 
A1, and A2 + A3. 

Instead of one chain of length 4, we have many chains of length 
2. 
For an array of length n, the longest chain(s) will be of length log
(n). 
t = log(n). m = n (as before).



Brent's Theorem

This tells us many useful things about the algorithm:

● No matter how many processors used, there can be no implementation of 
this algorithm that runs faster than O(log(n)).

● If we have n processors, the algorithm can be implemented in log(n) time

● If we have log(n) processors, the algorithm can be implemented in 2log(n) 
time (asymptotically this is the same as log(n) time)

● If we have one processor, the algorithm can be implemented in n time.


