
Outline The goal Ideas and tools Results Conclusions

Use of Threading Building Blocks in a parallel framework
prototype for SuperB

Marco Corvo

CNRS and INFN

October 10th 2012

Marco Corvo (CNRS and INFN) Use of Threading Building Blocks in a parallel framework prototype for SuperBOctober 10th 2012 1 / 16



Outline The goal Ideas and tools Results Conclusions

Outline

1 The goal

2 Ideas and tools

3 Results

4 Conclusions

Marco Corvo (CNRS and INFN) Use of Threading Building Blocks in a parallel framework prototype for SuperBOctober 10th 2012 2 / 16



Outline The goal Ideas and tools Results Conclusions

A proof of concept

1 This activity nust be regarded as a ’proof of concept’.

2 Results are a starting point for the definition of an architecture and a
computing model and are not intended to be used in a production
system

Marco Corvo (CNRS and INFN) Use of Threading Building Blocks in a parallel framework prototype for SuperBOctober 10th 2012 3 / 16



Outline The goal Ideas and tools Results Conclusions

A concurrent framework

The first step towards the parallelization of SuperB Framework is the
analysis of current code, mostly based on BaBar legacy code. In particular
we focused on one of the executables of Fast Simulation.
The analysis of a particular dataflow has the main goal of factorizing of
the workflow to exploit:

Parallelism at event level (more events being processed concurrently)

Parallelism at module level (more modules running concurrently on
the same event)

Marco Corvo (CNRS and INFN) Use of Threading Building Blocks in a parallel framework prototype for SuperBOctober 10th 2012 4 / 16



Outline The goal Ideas and tools Results Conclusions

Measuring hidden parallelism

The specific Fast Simulation executable data flow includes 127 modules.
For each module the analysis extracts:

The list of required input or data products needed by the module
to run

The list of provided output generated by the module

The processing time

Basically the trick is to look inside the Event and dive into physics data
products to understand who provides or requires what.
These lists are used to build a graph of dependencies

Marco Corvo (CNRS and INFN) Use of Threading Building Blocks in a parallel framework prototype for SuperBOctober 10th 2012 5 / 16



Outline The goal Ideas and tools Results Conclusions

Results

This analysis showed that the current code of Fast Simulation could
benefit from modules parallelization, that is there are modules which
can run concurrently

It turned out that modules which can run in parallel take only a few
percent of the overall processing time (≈ 10%)

On the other hand most of the processing time is spent inside
modules which cannot run in parallel

Marco Corvo (CNRS and INFN) Use of Threading Building Blocks in a parallel framework prototype for SuperBOctober 10th 2012 6 / 16



Outline The goal Ideas and tools Results Conclusions

Zoom in

These are snapshots of the complexity we have to deal with. A big effort
has been done to extract the dependencies of the modules, as the only
source of information are the data products that modules write into the
event, the data structure where physics results are stored

Marco Corvo (CNRS and INFN) Use of Threading Building Blocks in a parallel framework prototype for SuperBOctober 10th 2012 7 / 16



Outline The goal Ideas and tools Results Conclusions

Implementing module level parallelism

Module level parallelism is implemented using Tbb flow::graph objects
where every module in the analysis chain is mapped onto a flow::graph

node
The message passed
among modules is a
pointer to an event

Each module is a
function_node whose
operator() executes the
module algorithms and
returns the same pointer to
event

The event has been made
”thread safe” substituting
the list of products with a
concurrent_hash_map

Marco Corvo (CNRS and INFN) Use of Threading Building Blocks in a parallel framework prototype for SuperBOctober 10th 2012 8 / 16



Outline The goal Ideas and tools Results Conclusions

Issues

Currently there’s a limit in Tbb flow::graph as regards joining nodes

The schema works so that a given module runs when all its
”required” products are available

If module A needs N products to run, we need to notify A when they
are all available

This is possible using a particular flow::graph node called
join_node

This node has a mechanism which forwards a message to its successors
only when all of its input ports have been filled
The issue with this node is that the number of input ports must be
declared in advance and not dinamically

The solution is to recursively reduce the graph combining join nodes
in couples

Marco Corvo (CNRS and INFN) Use of Threading Building Blocks in a parallel framework prototype for SuperBOctober 10th 2012 9 / 16



Outline The goal Ideas and tools Results Conclusions

Graph reduction

Graph reduction

Marco Corvo (CNRS and INFN) Use of Threading Building Blocks in a parallel framework prototype for SuperBOctober 10th 2012 10 / 16



Outline The goal Ideas and tools Results Conclusions

Moving to event parallelism

We know that our current implementation suffers from the usage of locks
around modules, to protect against Fortran Common Blocks, from C++
objects used as Common Blocks and static objects.
We also expect that module level parallelism suffers from a limitation due
to the bad distribution of the computing time among modules.
For these reasons we explored parallelism also at event level

The first attempt was to exploit Intel R© Tbb parallel_for

This is the simplest approach as with minor changes in the main loop
we are able to inject more than one event into the analysis chain

The algorithm parallel_for applies a function, the physics module,
in parallel to a range of objects, the events

Event level parallelism should be adopted anyway also to allow a unique
Tbb instance to manage efficiently all the available resources through its
scheduling mechanism

Marco Corvo (CNRS and INFN) Use of Threading Building Blocks in a parallel framework prototype for SuperBOctober 10th 2012 11 / 16



Outline The goal Ideas and tools Results Conclusions

Integration with module parallelism

To integrate module level parallelism we substituted the parallel_for

function with two flow::graph nodes

Our initial setup was to have a queue_node responsible to inject the
events into the graph towards a limiter_node in order to control
the number of events running concurrently

The queue_node creates all the events to be processed by the
workflow

This causes the initial memory footprint of the executable to be
significantly higher than the ordinary ’serial’ one (≈ 800 Mb vs ≈ 450
Mb with 10k events)

The solution is to put a source_node before the limiter_node as
the former creates a new event to be injected only when the latter has
room for another one

Marco Corvo (CNRS and INFN) Use of Threading Building Blocks in a parallel framework prototype for SuperBOctober 10th 2012 12 / 16



Outline The goal Ideas and tools Results Conclusions

Results I (Single Intel R© Xeon E5630 (quad core, 2Gb/core))

Results with parallel for (HT off)

Marco Corvo (CNRS and INFN) Use of Threading Building Blocks in a parallel framework prototype for SuperBOctober 10th 2012 13 / 16



Outline The goal Ideas and tools Results Conclusions

Results II (Single Intel R© Xeon E5630 (quad core, 2Gb/core))

Results with parallel for (HT on)

Marco Corvo (CNRS and INFN) Use of Threading Building Blocks in a parallel framework prototype for SuperBOctober 10th 2012 14 / 16



Outline The goal Ideas and tools Results Conclusions

Results III (AMD R© Opteron 6238 (2x12 cores, 3Gb/core))

Marco Corvo (CNRS and INFN) Use of Threading Building Blocks in a parallel framework prototype for SuperBOctober 10th 2012 15 / 16



Outline The goal Ideas and tools Results Conclusions

Conclusions

Our implementation so far is not able to push up the CPU occupancy
due to eccessive locking and serialization points in the code

Our efforts have been nonetheless rewarded as we have shown the
speedup gained by event and module level parallelism

The parallel potential inside existing code is strategic

It optimizes resources usage and increases computing speed
Helps to better understand algorithms for future development

Issues are still under investigation, but we are confident to be able to
solve them

In the long term we will abandon the current SuperB framework for a
new one which is natively parallel and whose architecture will be
designed based on our experiences

Marco Corvo (CNRS and INFN) Use of Threading Building Blocks in a parallel framework prototype for SuperBOctober 10th 2012 16 / 16


	Outline
	Outline

	The goal
	The problem

	Ideas and tools
	Step one
	Event level parallelism

	Results
	Measures

	Conclusions
	Conclusions


