
INTERPROCESS DATA OBJECT
COMMUNICATION

Roberto A. Vitillo (LBNL)

1

CONTEXT

• AthenaMP communications

‣ reader process sends events to workers

• Coprocessor communications

‣ Athena[MP] jobs interacting with a GPU server process

• Available IPC mechanisms

‣ shared memory with explicit synchronization

‣ message passing with implicit synchronization

2

MESSAGE PASSING MODEL
• One of the most successful models for providing concurrency

‣ data and synchronization in a single unit

• Actor Model

‣ processes have an identity

‣ communicate by sending messages to mailing addresses

‣ Erlang, Scala

• Process calculi

‣ processes are anonymous

‣ communicate by sending messages through named channels

‣ Go Programming Language

3

PATTERNS

• Producer & Consumer

‣ producer pushes messages

‣ consumer pulls messages

• Client & Server

‣ client makes a request

‣ server replies to a request

4

CHANNELS

• Properties of a channels:

‣ name

‣ context (thread, local-process, distributed-process)

‣ asynchronous(k)

‣ topology

one-to-one

one-to-many many-to-many

5

SOCKETS

• Each end of a channel is attached to a Socket

• Different patterns have different Sockets,

‣ e.g. ProducerSocket, ConsumerSocket

• A Socket allows to:

‣ send() buffers of data to its peers (buffer-blocking)

‣ receive() buffers of data from its peers (blocking)

client

server

6

SOCKETS (2)
Channel channel("service", ONE_TO_ONE)
ISocket *socket = factory->createClientSocket(channel);

socket->send("ping", 5);
socket->receive(&buffer);

Channel channel("service", ONE_TO_ONE);
ISocket *socket = factory->createServerSocket(channel);

while(true){
 socket->receive(&buffer);
 socket->send("pong");
}

client

server

7

IMPLEMENTATION

• The API is currently implemented with ZeroMQ

‣ provides a default fall back implementation

‣ lock-free queues for threads

‣ AF_UNIX sockets for local processes

‣ TCP sockets for distributed processes

• The implementation switches according to the channel configuration

‣ E.g. one-to-one, producer-consumer uses a UNIX pipe with vmsplice()

8

IMPLEMENTATION (2)

0 μs

10 μs

20 μs

30 μs

40 μs
Latency

pipe vmsplice ZMQ

0 GB/s

3 GB/s

5 GB/s

8 GB/s

10 GB/s
Bandwidth

pipe vmsplice ZMQ

• One-to-one, client-server

• Kernel 3.5, Ivy Bridge

• ZMQ 2.2

9

CONCLUSION

• Library provides an uniform message-passing abstraction for inter-process
communication

• Data and synchronization in a single unit

• Communication patterns and topologies allow to

‣ reduce latency

‣ increase bandwidth

‣ express parallelism

• More implementations will be considered

‣ MPI?
10

QUESTIONS?

11

