
www.kit.edu ­ www.cern.ch

Status and future plans for software technology demonstrators in CMS

Thomas Hauth, Danilo Piparo, Vincenzo Innocente
Forum on Concurrent Programming Models and Frameworks, 10.10.2012

http://www.kit.edu/

CERN I EKP10th October 2012 | Thomas Hauth - Status and future plans for software technology demonstrators in CMS2

Using OpenCL for CMS Algorithms

The multiple scattering algorithm from the CMS track reconstruction was picked from the
CMSSW source code[1] and run in an stand-alone application using OpenCL:

Calculate the maximum scattering angle of a particle passing through a material
layer

Implementation of the Highland formula for multiple coulomb scattering

OpenCL verision of this algorithm is not intended for insertion in CMS production code
but served as a “sandbox” to test OpenCL with CMS input data in an isolated fashion

Called several times during the reconstruction of a single track

Useful figure: 500 to 1000 Tracks during the 2012 run period

In terms of mathematical operations:

Multiplications, divisions, sums and a logarithm.

I/O: 4 double precision floating points in, 3 of them out.

About 40 lines of code, 1 branching

Same source is run on the CPU and the GPU

Reference implementations were created using

OpenMP and TBB to be able to compare the

OpenCL results

[1] TrackingTools/MaterialEffects/interface/MultipleScatteringUpdator.h

CERN I EKP10th October 2012 | Thomas Hauth - Status and future plans for software technology demonstrators in CMS3

OpenCL Performance Results

The algorithm has been computed for various amount of input tracks (100, 1.000, 10.000)

A varying amount of threads have been used on the CPU (Intel Core i7-3930K – 6 cores)

The measurements on the GPU always use the full device (NVIDIA GeForce GTX 560)

GPU no transfer

GPU with transfer

Transferring the data from and to
the graphic cards adds ~0.1ms to
the runtime on the GPU

Reuse of data transferred to the
GPU is desirable

The Intel OpenCL implementation
performs as well as the classic
OpenMP does

The same OpenCL kernel code can
be also run on the GPU, if available

For less then 10.000 track input
size, the OpenCL scheduling
overhead must be considered

TBB performs equally well as
OpenMP (see backup)

Note: Switching to the new Intel OpenCL SDK 2012 reduced the scheduling overhead of this platform considerably

CERN I EKP10th October 2012 | Thomas Hauth - Status and future plans for software technology demonstrators in CMS4

OpenCL for CMS Tracking

A summer student project (finished in August 2012) had the goal to start this effort and demonstrate the
feasibility of OpenCL for track seeding in CMS

Students: Grazina Laurinaviciute and Darius Miskinis, both from Vilnius University, Lithuania

A simplified representation for the geometry of the CMS tracker in OpenCL memory was created

Various types of track seeding algorithms were investigated on GPU and CPU

OpenCL kernels were found to be portable between the different devices without changes

All OpenCL platforms were able to handle the increasing amount of tracks without a significant drop in the
time per track

Building on the initial work of Grazina and Darius, we intend to build a more complete OpenCL tracking
technology demonstrator

O
ve

ra
ll

R
un

tim
e

(s
)

Double precision floating point on GPU: huge price to pay
Simplified visualization of particle tracks crossing the first three
detector layer. These three hits are used for the initial seeding.

CERN I EKP10th October 2012 | Thomas Hauth - Status and future plans for software technology demonstrators in CMS5

Bottom Line: Computation on GPU

The promises of OpenCL are maintained: the same kernels run smoothly and
without modifications on CPUs and GPUs. No-vendor lock-in!

The same code will run on regular x86-64 CPUs (for end-user analysis), HLT
and other dedicated compute farms with GPUs or Intel MICs.

Evaluation for CMS

Fast code execution on a wide variety of platforms

Scales very well with the available hardware

Existing CMSSW code must be reimplemented as OpenCL kernels

The scheduling overhead and transfer time GPU to CPU must be considered
Sending data buffers cumulated over more than one event to OpenCL becomes necessary
(implications on the framework)

+

-
+

-

CERN I EKP10th October 2012 | Thomas Hauth - Status and future plans for software technology demonstrators in CMS6

Parallel Track Seeding

The Intel Threading Building Blocks library was used to to exploit concurrency within reconstruction
algortithms in CMSSW: In this case Triplet Seeding

The seeding part of the CMS track reconstruction was parallelized with only minor changes to the
framework (atomics for ref counting, thread pool beyond module boundaries)

Intel TBB website:
http://threadingbuildingblocks.org/

Performance Measurements

The full CMS reconstruction chain was run with different numbers of threads

Input: 50 events of the highest pile-up sample recorded with the CMS detector in 2011

On average, one event contains ~40 collisions

Test Setup:

Intel(R) Core(TM) i7 CPU X 980 @ 3.33GHz with 6 physical cores (12 HyperThr.)

6 GB RAM

Scientific Linux 5.8

CMSSW 5.2 official release (with modifications for the multi-threading code)

The measurements labeled Serial refer to an unchanged version of CMSSW (no TBB Service,
no atomic operations)

The triplet seeding takes about 14% of the runtime in the serial version

Realistic and complex test setup: Large application, complex data flow in the RECO app etc.

CERN I EKP10th October 2012 | Thomas Hauth - Status and future plans for software technology demonstrators in CMS7

Triplet Seeding Runtime and Scaling
Good scaling up to five cores

Compared to the overall runtime of the algorithm, the final merge step only takes about .1 to .3
percent of the triplet seeding time

This depends on the number of threads: for more threads more work blocks are partitioned

Full reproducibility achieved, independent of the number of thread

Sequential vs. Threaded Runtime:
Sequential Version: 3.59s

Parallel Version (1 thread): 3.61s

CERN I EKP10th October 2012 | Thomas Hauth - Status and future plans for software technology demonstrators in CMS8

CMS Reconstruction Runtime and Memory

Each thread adds about 1 MB to the overall memory consumption. Negligible compared to the
memory footprint of the application (~ 1 GB) > lightweight scaling

Higher-than-expected scaling from 1 to 2 cores, probably due to the positive effects of using
the L1/L2 caches of two cores simultaneously

CERN I EKP10th October 2012 | Thomas Hauth - Status and future plans for software technology demonstrators in CMS9

Bottom Line: Parallel Algorithms

A multi-threaded track seeding using TBB was implemented within the CMS Software
Framework

Much more than a prototype: Tested and validated in a production environment with
actual CMS proton-proton data

Parallelism within an algorithm is a feasible way to speed-up long-running modules and
serial module chains with very low memory overhead (~ 1 MB / Thread)

This prototype has helped CMS to make an informed decision on the upcoming
integration of multi-threading in the framework

Evaluation for CMS
Can be applied to existing code with minor changes

Prepares our software for next-generation accelerators (Intel MIC)

Wide varieties of processing can be run in parallel

(Tracks, Hits, ...)

+
+
+

CERN I EKP10th October 2012 | Thomas Hauth - Status and future plans for software technology demonstrators in CMS10

Future Steps

The knowledge gained during the prototyping will be beneficial in the transformation
process to a multi-threaded framework

Once all necessary decisions on the framework changes have been made, time
consuming parts of the reconstruction will be modified (namely the rest of the track
reconstruction) to be able to run in parallel

We learned a lot during the seeding parallelization, especially in terms of
reproducibility and thread-safe data access in large applications

OpenCL on the CPU becomes mature enough to compete with “classical” methods like
OpenMP

Further development on a fast CMS track reconstruction using GPU and CPU with
OpenCL

Evaluation of upcoming hardware platforms (Intel MIC, AMD Bulldozer) in light of
OpenCL and CMS

CERN I EKP10th October 2012 | Thomas Hauth - Status and future plans for software technology demonstrators in CMS11

Note: Intel TBB 4.1 released with full support for a multi-threaded deterministic map-reduce
implementation (parallel_deterministic_reduce)

CERN I EKP10th October 2012 | Thomas Hauth - Status and future plans for software technology demonstrators in CMS12

BACKUP

CERN I EKP10th October 2012 | Thomas Hauth - Status and future plans for software technology demonstrators in CMS13

Framework and Algorithm Parallelism
Beyond Event Level Parallelism

Framework Parallelism
After modifications (declaring dependencies etc.), parallel execution of
already existing serial modules is possible

Hides most of the multi-threading complexity from the module developer

Scales very well at the price of loading and writing multiple events at the
same time. See the presentation by Chris Jones*

Algorithm Parallelism
Changes mostly contained in one module

Very lightweight scaling (in terms of memory)

Transparent to subsequent Modules

Most profitable to apply on long-running Modules which can only operate
sequentially (like CMS Iterative Tracking)

* Forum on Concurrent Programming Models and Frameworks, 14.03.2012
 http://indico.cern.ch/conferenceDisplay.py?confId=181721

A great potential lies in combining these two levels of parallelism: scale with the
amount of input data and the number of available computing cores.

CERN I EKP10th October 2012 | Thomas Hauth - Status and future plans for software technology demonstrators in CMS14

Passage of particles through matter

Source: PDG – Review of Particle Physics, 2010

CERN I EKP4th May2012 | Thomas Hauth - Parallel Processing in CMS15

OpenCL on CPU vs. TBB vs. OpenMP

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Passage of particles through matter
	Slide 15

