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Performance of capacitively coupled active pixel 
sensors in 180 nm HV CMOS technology 

irradiated to HL-LHC fluences 
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Reminder: fluences at HL-LHC

2

 integrated luminosity: 3000 fb-1 
 including a safety factor of 2 to account 

for all uncertainties this yields for ATLAS:
 at 5 cm radius:

 ~2•1016 neq cm-2 

 ~1500 MRad
 at 25 cm radius

 up to 1015 neq cm-2 

 ~100 MRad
 several m2 of silicon

 strip region
 some 1014 neq cm-2

 up to ~100 m2 of silicon
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Implications

 High fluences: trapping dominant
 reduce drift distance, increase field → reduce drift time:

 3D sensors
 thin silicon
 low depletion depth 'on purpose' to increase field: 

 low(er) resistivity silicon
 dedicated annealing to increase Neff

 Large areas: low cost of prime importance
 industrialised processes
 large wafer sizes
 cheap interconnection technologies

 Idea: explore industry standard CMOS processes as sensors
 commercially available by variety of foundries

 large volumes, more than one vendor possible
 8” to 12” wafers

 low cost per area: “as cheap as chips”
 (partially too) low resistivity p-type Cz silicon

 thin active layer
 wafer thinning possible
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AMS H18 HV-CMOS

 Project initiated by Ivan Peric (U Heidelberg)
 Austria Micro Systems offers HV-CMOS 

processes with 180 nm feature size in 
cooperation with IBM
 biasing of substrate to ~60-100V possible
 substrate resistivity ~20 Ohm*cm → Neff > 1014/cm3

 radiation induced Neff insignificant even for innermost layers
 depletion depth in the order of 10-20 µm → signal ~1-2 ke-

 on-sensor amplification possible - and necessary for good S/N
 key: small pixel sizes → low capacitance → low noise

 additional circuits possible, e.g. discriminator
 beware of 'digital' crosstalk

 full-sized radiation hard drift-based MAPS feasible, but challenging
 aim for 'active sensors' in conjunction with rad-hard readout electronics first
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A HV-CMOS sensor...

 essentially a standard n-in-p sensor
 depletion zone 10-20 µm: signal in the order of 1-2ke-

 challenging for hybrid pixel readout electronics
 new ATLAS ROC FE-I4 might be able to reach this region – but no margin

HV deep N-well

Depleted

P-substrate

Pixel i Pixel i+1

14 µm @ 100V

Not depleted

The depleted high-voltage diode used as sensor (n-well in p-substrate diode)

~1000 e

~1000e
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...including active circuits: smart diode array (SDA)

 implementation of 
 first amplifier stages
 additional cuircuits: discriminators, impedance converters, logic, …

 deep sub-micron technology intrinsically rad-hard

HV deep N-well

P-Well

PMOSNMOS

Depleted

P-substrate

Pixel i Pixel i+1

Not depleted

CMOS electronics placed inside the diode (inside the n-well)

14 µm @ 100V

~1000 e

~1000e
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Prototypes

 Several test-chips already existing, see backup slides for more 
detailed results

RO chip

Binary information

Analog information

Analog information

SDA with sparse readout
(“intelligent” CMOS pixels)

HV2/MuPixel chip

SDA with frame readout
(simple PMOS pixels)

HVM chip

SDA with capacitive readout
(“intelligent” pixels)

Capacitive coupled pixel 
detectors

CCPD1 and CCPD2 detectors



H
V-

C
M

O
S

H
V-

C
M

O
S

Daniel MuenstermannDaniel Muenstermann
Prototype summaries First chip – CMOS pixels

Hit detection in pixels
Binary RO

Pixel size 55x55μm
Noise: 60e

MIP seed pixel signal 1800 e
Time resolution 200ns 

CCPD1 Chip
Bumpless hybrid detector

Based on capacitive chip to chip
signal transfer

Pixel size 78x60μm
RO type: capacitive

Noise: 80e
MIP signal 1800e

CCPD2 Chip
Edgeless CCPD

Pixel size 50x50μm
Noise: 30-40e

Time resolution 300ns
SNR 45-60

PM1 Chip
Pixel size 21x21μm

Frame mode readout
4 PMOS pixel electronics

128 on chip ADCs
Noise: 90e

Test-beam: MIP signal 2200e/1300e
Efficiency > 85% (timing problem)

Spatial resolution 7μm
Uniform detection

PM2 Chip
Noise: 21e (lab) - 44e (test beam)

Test beam: Detection efficiency 98%
Seed Pixel SNR ~ 27

Cluster Signal/Seed Pixel Noise ~ 47
Spatial resolution ~ 3.8 µm

Irradiations of test pixels
60MRad – SNR 22 at 10C (CCPD1)

1015n
eq

/cm2 – SNR 50 at 10C (CCPD2)

Frame readout - monolithicBumpless hybrid detector

I. Peric
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From MAPS to active sensors

 Existing prototypes would not suitable for HL-LHC, mainly because
 readout too slow
 time resolution not compatible with 40 MHz operation
 high-speed digital circuits might affect noise performance

 Idea: use HV-CMOS as sensor in combination with existing readout 
technology
 fully transparent, can be easily compared to other sensors
 can be combined with several readout chips
 makes use of highly optimised readout circuits
 can be seen as first step towards a sensor being integrated into a 3D-

stacked readout chip (not only analogue circuits but also charge 
collection)

 Basic building blocks: small pixels (low capacitance, low noise)
 can be connected in any conceivable way to match existing readout 

granularity, e.g.
 (larger) pixels
 strips ROCPixels
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Pixels: sizes and combinations

 Possible/sensible pixel sizes: 20x20 to 50x125 µm
 50x250 µm (current ATLAS FE-I4 chip) too large
 combine several sensor “sub-pixels” to one ROC-pixel

 sub-Pixels encode their address/position into the signal as pulse-height-
information instead of signal proportional to collected charge

 routing on chip is well 
possible, also non-neigh-      
bour sub-pixels could         
be combined and more      
than one combination is 
possible
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Pixels: bonding?

 Only reason not to use AC coupling with pixel sensors up to now 
was small coupling capacitance in association with low signal
 amplification possible, hence AC transmission not a problem at all
 allows to get rid of costly bump-bonding
 layer thicknesses below 5 µm have been reached with industry standard 

flip-chipping machines and rad-hard liquid epoxy glues
 variations in glue thickness are handled by tuning procedures and offline 

corrections if necessary
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Strips

 Easiest idea would be 
to simply sum all pixels 
within a virtual strip

 Hit position along the 
strip can be again 
encoded by pulse 
height for analogue 
readout chips (e.g. 
Beetle)

Comparator or ADC

Readout ASIC (such as ABCN) Strip sensor

StripCSA

Wire-bonds

Comparator or ADC

Readout ASIC (such as ABCN) CMOS sensorPixels

CSA

Wire-bonds
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Strips

 Signals are digital so 
multiple connections 
are possible, e.g.
 “crossed strips”
 strips with double 

length but only half 
the pitch in r-phi

Comparator or ADC

Readout ASIC (such as ABCN) CMOS sensorPixels

CSA

Wire-bonds
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Reticule size/stitching

 Sensor size is currently limited by reticule size of ~2x2 cm
 however, the yield should be excellent (very simple circuit, essentially no 

“central” parts) so it might be interesting to cut large arrays of sensors 
from a wafer and connect individual reticules by 
 wire-bonding
 post-processing (one metal layer, large feature size)

 There are HV-CMOS processes/foundries which allow for stitching
 Very slim dicing streets

 Gaps between 1-chip 
modules could be   
rather narrow
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HV2FEI4

 A combined active strip/pixel sensor was designed and produced
 strips compatible with ATLAS ABCN and LHCb/Alibava Beetle
 pixels match new ATLAS FE-I4 readout chip

 capacitive coupling
 bump-bonding possible

 Structure
 6 sub-pixels form basic element

 each 33 x 125 µm
 connect to 2 FE-I4 pads
 form a 100 µm pitch strip

 small fill factor – future 
options:
 more circuits possible
 smaller sub-pixels

Comparator

Amplifier

Tune DAC

33 µm
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HV2FEI4

 Chip size: 2.2mm x 4.4mm
 Pixel matrix: 60x24 (sub-)pixels of 33 µm x 125 µm
 21 IO pads at the lower side for CCPD operation
 40 strip-readout pads (100 µm pitch) at the lower 

side and 22 IO pads at the upper side for (virtual) 
strip operation

 On chip bias DACs

 Pixels contain charge sensitive amplifier, comparator 
and tune DAC

 Configuration via FPGA or µC: 4 CMOS lines (1.8V)

3 possible operation modes

 standalone on test PCB
 strip-like operation 
 pixel (FE-I4) readout

Strip pads

IO pads for CCPD operation

IO pads for strip operation

Pixel matrix

4.
4m

m
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HV2FEI4: characterisation

 standalone, by I. Peric (Mannheim)
 MPW for 90Sr at ~1900 e-

 would mean more than 20µm active 
depth?

 corresponds to 900mV injection

Fe-55 peak corresponds to 6 us

1660e

Sr-90 MPW corresponds to 7  us

1900 e

Sr-90 MPW corresponds to ~ 900mV injection amplitude

800mV corresponds to 6 us

Testpulse vs. ToT
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HV2FEI4: characterisation

 standalone, by I. Peric (Mannheim)
 MPW for 90Sr at ~1900 e-

 would mean more than 20µm active 
depth?

 corresponds to 900mV injection
 Noise: ~30-40mV → SNR: 900/40 = 22

Sr-90 MPW corresponds to 7  us

1900 e

Sr-90 MPW corresponds to ~ 900mV injection amplitude
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HV2FEI4: irradiation

 First irradiations conducted at CERN/PS and with an x-ray tube
 on special PCB allowing for remote operation, HV2FEI4 powered and read-

out during irradiation

CCPD9 irradiated at 80 MRadun-irradiated device

Fe-55  spectrum

Sr-90 spectrum

Sr-90 spectrum

~1660e

ToT two times smaller

clear decrease of the ToT amplitude
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HV2FEI4: irradiation

 First irradiations conducted at CERN/PS and with an x-ray tube 
 on special PCB allowing for remote operation, HV2FEI4 powered and read-

out during irradiation

 clear radiation effects seen after proton and x-ray irradiation
 drop in amplitude/amplification
 also seen with test pulser input → electronics effect, rad-soft design
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Rad-hardness: consequences

 deliberately chose “standard” design to see how far it would get
 not far enough... → “harden” design by guard rings, circular transistors, …

 HV2FEI4_v2 was submitted in November and received recently
 first measurements as expected, irradiation to follow

A

D

CCPD bus

Strip bus

4-bit DAC

(CR filter)

Programmable currentG

G

In<0:3>
RW

SFOut

Cap. Injection

Amplifier

Filter

Comparator Output stage

CCPD electrode

BL

Th

Circular devices
Circular devices

Ampli output

Monitor output

CLKC

SRin

SrOut

Sr-90 event
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HV2FEI4: strip readout

 ABCN readout being planned
 Beetle readout in place, but issues 

with noise/common mode pickup
 also present if HV2FEI4 not powered...

 configuration works, “strips” can be 
switched on/off

 position-encoding works:
 monitor output on scope
 same principle on strip readout pads

Row 0 Row 12 Row 23



H
V-

C
M

O
S

H
V-

C
M

O
S

Daniel MuenstermannDaniel Muenstermann
HV2FEI4: Pixel readout

 Several HV2FEI4s glued to FE-I4A and FE-I4B
 HV2FEI4 wirebonds done through hole in PCB

 could be bumps or TSVs later
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HV2FEI4: Pixel readout

 First measurements:
 FE-I4A (w/ bumps) sees HV2FEI4 being glued to it
 Physics (22Na source) is seen by FE-I4B (w/o bumps)
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HV2FEI4: Pixel readout

 ToT encoding:
 3 sub-pixels clearly distinguishable
→ sub-pixel encoding works!

 dynamic ranges to be better matched

Sub-Pixel 1

Sub-Pixel 2

Sub-Pixel 3

All on

ToT ToT ToT

ToT
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n-irradiated behaviour: 1e16 neq/cm2

 irradiation done at Ljubljana (thanks!) w/o biasing, low TID
 up to now measurements at room temperature (!), o(20) days of RT 

annealing
 for now with (only) -20V to -25V bias voltage
 noise occupancy at ~10-10, but threshold currently uncalibrated
 below: about ~10 minutes exposure, self-trigger (!) source scan with and 

without 90Sr source

w/o source w/ 90Sr source

preliminary preliminary
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Irradiated behaviour: 1e16 neq/cm2

 measurements with scintillator trigger
 makes sure we select MIP-like electrons
 avoids “noise” triggers
 rate rises with HV as expected, but (rate!) 

saturation not yet seen → go higher in HV 

 next steps: calibration, cooled operation

 

LVL1 bin
preliminary

preliminary

preliminary

HV

Events/minute
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Future plans

 More pixel assemblies being put together
 some unirradiated for technology development
 a bump-bonded one in preparation at Glasgow for comparison
 more neutron-irradiated to look at (1e15 and 1e16 neq/cm2)
 already one HV2FEI4_v2 pixel assembly existing, working on changes to 

the devices' configuration

 USBPix is being modified to enable configuration only with 
USBPix/STControl (M. Backhaus, U Bonn)
 makes implementation of scans much easier

 further submissions are being discussed
 dedicated to strip readout

 optimised sub-strip pitch (50 µm? 25 µm?) in combination with z-resolution
 dedicated to disks

 square pixels preferred
 50x50 µm should be achievable with FE-I4
 sensor candidate for “standard disks” and for very forward tracking
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Case study: Very forward tracking

 Limitation to pseudorapidity of eta = 2.5 inappropriate wrt VBF/VBS
 Design studies ongoing for an extension to eta~4 (phase 2 upgrade)

 physics: Higgs self-coupling, vector boson scattering
 layout: acceptable area increase 
 sensor challenges: mass production, rad-hardness at small radii, square 

pixels/small eta pitch preferred → HV-CMOS?

LoI design extension
Alpine stave design 
extension

pile-up rejection feasible
T. Todorov



H
V-

C
M

O
S

H
V-

C
M

O
S

Daniel MuenstermannDaniel Muenstermann

 

Conclusions
 HV-CMOS processes might yield radiation-hard, low-cost, 

improved-resolution, low-bias-voltage, low-mass sensors
 Process can be used for

 'active' n-in-p sensors with capacitive coupling (ATLAS)
 drift-based MAPS chips (µ3e-experiment at PSI)

 First active sensor prototypes being explored within ATLAS 
 initial design too TID-soft, 2nd iteration being tested now
 nevertheless, results with capacitively coupled pixel sensors look promising
 “virtual” strip sensors –  

z-position encoding works

 Future submissions still in 2013 will aim towards geometrically realistic 
prototypes

Row 0 Row 12 Row 23

1e16 neq/cm2
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Backup slides
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Test beam results: monolithic 

 excellent resolution
 very good S/N ratio
 efficiency limited by readout artifacts:

 column-based readout
 row not active during readout
 data analysis did not correct for this
 very small chip → low statistics

The type 1 chip HVPixelM: 
Simple (4T) integrating pixels 
with pulsed reset and
rolling shutter RO
21x21 µm pixel size

Seed pixel SNR 27, seed 
signal 1200e, cluster 2000e

Spatial resolution: 
sigma=3.8µm, 
telescope resolution of 
2.3 µm not subtracted

Efficiency vs. the in-pixel position of the fitted hit.
Efficiency at TB: ~98% (probably due to a rolling 
shutter effect)
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CPPD prototype results

 excellent noise behaviour: stable 
threshold at ~330 electrons

 good performance also after irradiation

CAPPIX/CAPSENSE edgeless CCPD
50x50 µm pixel size Signals and noise of a CAPSENSE 

pixel after 1015n
eq

/cm2

0 500 1000 1500 2000
0.0

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

n
cy

Signal [e]

 Efficiency - window 800ns

Detection efficiency vs. amplitude
Detection of signals above 330e 
possible with >99% efficiency.
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CPPD prototype results

 Irradiation with 23 MeV protons: 1e15 neq/cm2, 150MRad
 FE-55 performance recovers after slight cooling
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