REWARD Wide Area Radiation Surveillance with Semiconductor Detectors

Introduction

- The REWARD idea
- Radiation detectors: Gamma and Neutron systems
- Status

- XIE GmbH is a SME from Freiburg, Germany
- S&C is a SME from Barcelona, Spain

 Vitrociset is a large Italian Company

 Edisoft is a large Portuguese Company

 CSIC is the Spanish Research Council of Scientific Investigations

 University in Freiburg, Germany

 ITN is the Portuguese Nuclear and Technological Institute in Lisbon

The REWARD Partners: End Users

 Civil Protection of the Region of Campania, Italy

(We also work with the Rome Fire Brigade)

 Spanish Civil Protection from Catalunya

 Spanish "Guardia Civil" from Catalunya

The REWARD Concept

- Radiation monitoring network: small
 autonomous mobile units mounted on cars
- Semiconductor sensors for gamma and neutron detection
- (Cd,Zn)Te (CZT) gamma sensor for precise energy measurement (isotope ID)
- Si detector with converter for thermal neutrons
- Geolocation from GPS receiver
- Secure communications unit
 - Choice of TETRA, GSM (UMTS, …)
- Data get send to and processed in Central Control Room in real time
- Goals: Obtain radiation map (background mapping), discover potential radioactive threats

Remote Control Station

Roots: First Freiburg CZT Radiation Monitoring System

- Decade of CZT expertise in Freiburg Materials Research Centre (FMF) and spin-off company X-Ray Imaging Europe (XIE)
- CZT System designed for autonomous long-term gamma spectroscopy
- Joint Project with Federal Ministry of Radiation Protection (German "BFS")
- BFS operates a nationwide network of radiation monitors
- CZT Unit placed on top of Black Forest Mountain near Freiburg
- Successful data taking for many months

7

Long-Term Spectrum from BFS CZT Prototype

Real Time Wide Area Radiation Surveillance System

Initial Prototype Gamma Detector System

The core: Coplanar Grid detector

- (Cd,Zn)Te sensor on PCB biasing board
- Similar to BFS system
- Coplanar Grid anode structure (removal of hole current contribution)

REWARD - Semiconductor Detectors as Radiation Monitors FP7-SEC-2011.1.5-1 / 284845

9

Dissipation box

Picture of one (Cd,Zn)Te sensor on the PCB biasing board

- 2x (Cd,Zn)Te sensors (10 x 10 x 10 mm) in coincidence
- MCA up to 4 MeV (1 keV energy binning)
- Temperature stabilization: 20°C with Peltier cooling
- Ideal biasing voltages have to be determined for each detector
- One prototype built, currently testing

Reward Project: Geant4 Simulation Results of the Gamma Detection System. FP7-SEC-2011.1.5-1 / 284845

2nd Prototype: Gamma Detection System

Thermal Insulation

Reward Project: Geant4 Simulation Results of the Gamma Detection System. FP7-SEC-2011.1.5-1 / 284845

Cs-137 Energy Spectrum, measured with a 1 cm³ CZT CPG at Room Temperature

SEVENTH FRAMEWORK

PROGRAMME

Implementation of the Gamma Detector in Geant4

Photo Peak Detection Efficiency

Determination of photo peak detection efficiency for two CZT sensors working in coincidence for different incident angles of mono-energetic gamma rays

10B

- Neutron detection based on thin silicon sensor and ¹⁰B converter layer for slow neutrons
- Reduced thickness to reduce gamma rates
- Si sensor in novel 3D-type layout to increase area and hence efficiency

Silicon wafer with sensors at CNM

Neutron Detector System (CNM Barcelona)

- Neutron detector board with 4 silicon sensors and electronic components
- Several boards used simultaneously to increase efficiency
- First prototype of neutron detector module
- 4 boards (no sensors mounted)
- Central PE block serves as moderator to increase rate of slow neutrons

Reference Test Case: ¹³⁷Cs

- "Goiania Incident" used as one reference scenario
- Radiotherapy ¹³⁷Cs source stolen from abandoned hospital in Brazil 1987
- Opened, handled and ¹³⁷Cs powder touched by several people (who were unaware of any risks)
- Nuclear hazard recognised as such after 16 days
- 4 fast deaths, 249 people significantly contaminated, enormous clean-up operation
- Goiania Model source: 5.1 x 10¹³ Bq of ¹³⁷Cs behind a shield of Pb, Cu, W, steel

Reference Test Case: Nuclear Warhead

Nuclear Warhead scenarios from non-classified sources

- Fetter, S. et al. "Detecting Nuclear Warheads". Science & Global Security, 1990, Volume 1, pp.225-302.
- Based on typical weapons grade Uranium or Plutonium cores
- Surrounded by tamper and shielding

SEVENTH FRAMEWORK

Background Experimental Measurements

Background Experimental Measurements

Expected System Performance: ¹³⁷Cs

- Simulated spectra for Goiania type scenario
- CZT System 1 (5, 10) m away from source, running for 30s
- Can very easily see signal and discriminate against background, and identify the ¹³⁷Cs from the 662keV line

Expected System Performance: Nuclear Warhead

- Simulated spectra for weapons grade Plutonium scenario
- CZT System 1 m away from source, running for 30s
- Difficult to see signal above background
- Situation even worse for weapons grade Uranium

- Novel silicon sensors, (Cd,Zn)Te CPG sensors plus IT and communication technology fused to create radiation detection and monitoring network
- First prototype put together this summer
- Commercialisation possible (and desired!)
- System well suited to e.g. Goainia scenario.
- Nuclear warheads more difficult to detect would need extra info from neutron system
- Many other use feasible case:
 - Monitoring after Fukushima-type incident
 - Background mapping

BACKUP ONLY FROM HERE

Advertisement: Freiburg is looking to recruit

• PhD student to work on Si detectors (ATLAS Tracker Upgrade) Contact Ulrich.Parzefall@cern.ch for details and/or informal enquiries

