

Calculating the electric field from eTCT measurements

Marcos Fernández García, I. Vila IFCA-Santander (Spain) & M. Gabrysch, C. Gallrapp, M. Moll, H. Neugebauer CERN

Work developed at the SSD lab at CERN

Join us for the 22nd RD50 Workshop at the University of New Mexico, Albuquerque, New Mexico, USA

June 3-5, 2013 A Workshop about Radiation Hard Semiconductor Devices for Very High Luminosity Colliders.

Chaired by Michael Moll, (CERN) and Sally Seidel (University of New Mexico)

Abstract deadline extended to: May 13, 2013

June 3-5 2013, 22nd RD50 Workshop, University of New Mexico, Albuquerque, New Mexico, USA

Contents

eTCT intro

Issues with the calculation of v_{drift} in eTCT

Collection time

Extraction of E-field for non-irradiated detectors

Edge-TCT technique

• Characterization technique developed by Ljubljana group. It allows to extract sensor properties (vdrift, efficiency, CCE) **as a function of depth.**

• Charge carriers created at **selected depth** in the bulk

• **Spatial resolution** given by laser width (vertical). Measurements averaged over strip width (horizontal).

• **SSD setup: 5th strip** AC readout. Bias Ring grounded, Backside biased.

Setup Featuring:

- \rightarrow 80 ps FWHM laser 1060 nm
- \rightarrow XYZ motion
- \rightarrow T controlled measurements
- \rightarrow In-situ annealing

• DAQ by CERN SSD (N. Pacifico, M. Gabrysch, I. Dolenc)

Calculation of drift velocity:

• eTCT provides a profile of the instantaneous "trapping-free" drift velocity ve+vh

Uncertainties on the measured drift velocity:

• eTCT provides a profile of the instantaneous "trapping-free" drift velocity ve+vh

Two unknowns:

1) Number of e-h pairs $N_{e,h}(z) \rightarrow$ for non-irrad detectors we can calculate it from the charge collected (see backup).

2) BUT how is I(t~0;z) defined?? I use an average of I(t) over 400 ps:

$$v_{drift}(z_i) = \frac{d}{Ae_0 N_{e,h}} \cdot \frac{1}{N_{400}} \sum_{j=0}^{400 \, ps} I(t_j, z_i)$$

Absolute vdrift ([a.u.]) for different averaging times

Normalized vdrift ([a.u.]) for different averaging times

Even if the relative information in the range [300-600] ps is the same, the **absolute** value of vdrift is different.

Different averaging times, will lead to **different absolute values of vdrift** and therefore of E-field.

So to extract the E-field we need a method not based in v_{drift}

Measuring collection time

• In eTCT we can **measure** the collection time as a function of depth $(t_{coll}(z))$. <u>Different</u> <u>collection times at different injection depths</u>.

• The collection time is **measured** as the time lapse between rise edge and falling edge of current pulse.

- Pulse start: calculated as intersection of baseline with straight line fit of the pulse raising edge.

- Pulse end: calculated as time needed to collect 98% of the total charge

Calculating collection time

z=0

z=d

p-bulk

The collection time can be **calculated** as the longest of the drifting times of the 2 types of carriers:

E [V/μm]

$$\sum_{z=d}^{n} \frac{1}{p-bulk}$$

$$t_{collection}(z) = Max \left[t_{e}(z), t_{h}(z) \right]; \text{ where } \begin{cases} t_{e}(z) = \int_{z}^{0} \frac{1}{v_{e}(z')} dz' \\ t_{h}(z) = \int_{z}^{d} \frac{1}{v_{h}(z')} dz' \\ t_{h}(z) = \int_{z}^{d} \frac{1}{v_{h}(z')} dz' \end{cases}$$

$$v_{e,h} \text{ Jacoboni's parar}$$
Depends on E-field:
$$E(z) \text{ is a linear (non e-E(z)) is a linear (n$$

1

10

$$v_{e,h}$$
 Jacoboni's parametrization

Depends on E-field:

E(z) is a linear (non irrad.)

E(z) quadratic (irradiated)

Calculating Electric field from collection time

The collection time can be calculated as the longest of the drifting times of the carriers: 0 = 1

$$t_{\text{collection}}(z) = \text{Max}\left[t_{e}(z), t_{h}(z)\right]; \text{ where } \begin{cases} t_{e}(z) = \int_{z}^{z} \frac{1}{v_{e}(z')} dz' \\ t_{h}(z) = \int_{z}^{d} \frac{1}{v_{h}(z')} dz' \\ v_{e,h} \text{ Jacoboni's parametrization} \end{cases}$$

• We then extract E(z) from tcoll:

$$\chi^{2} = \sum_{z=0}^{d} \left[t_{coll, meas}(z) - t_{collection} \right]^{2}$$

- Note that this method does **not need** the **measured vdrift** at all.
- Once we extract the E-field \rightarrow we can calculate the "real" vdrift, fixing the normalization issue.

Question: how much RC degrades the timing information?

ETCT equivalent circuit behaves like an amplifying low pass filter

• Simulated response for an over-depleted diode with C=10 pF, d=296 μ m, light injection 50 μ m below the strips.

Question: how much RC degrades the timing information?

Simulated effect of RC low pass filter

- Simulation using overdepleted diode, no diffusion considered
- Below C=10 pF, the contribution of RC to the collection time is <u>below the experimental error</u>.
- Higher spread with electrons.

Question: How much capacitance is seen by the amplifier in eTCT?

eTCT: 5th strip connected to amplifier, Bias Ring is grounded, backplane biased

Conclusion: RC smearing should not be important for depleted sensors

1) Fit collection time using linear E-field $\rightarrow E_{coll}(z)$

2) Calculate theoretical drift veloctity:

Scale measured drift velocity to theoretical

3) Fit
$$v_{drift}$$
 and extract $E_{vdrift}(z)$

Note: for the moment, method applied only to unirradiated det. at V \geq Vdep

$$v_{drift} = \frac{\mu_{0,e} E_{coll}}{\left(1 + \left(\frac{\mu_{0,e} E_{coll}}{v_{sat,e}}\right)^{\beta_e}\right)^{\frac{1}{\beta_e}}}$$

Starting parameters for non-irradiated detector

$$E(z) = a + bz$$

• Conditions for the field $(V \ge V_{dep})$:

$$V_{bias} = \int_{0}^{d} E(z) dz = \int_{0}^{d} (a+bz) dz \Rightarrow a$$

$$E(z=d) = 0 \text{ at } V = V_{dep} \Rightarrow b \text{ parameter}$$

$$E(z) = \frac{V_{bias}}{d} - 2 \frac{V_{dep}}{d^2} \cdot (z-\frac{d}{2}) = a'+b' \cdot (z-\frac{d}{2})$$

• If we fix parameter a' in the fit, the V_{bias} condition is fulfilled by construction

Fit of v_{drift} with border effects

• We minimize a χ^2 function that depends on polynomial coefficients of the E-field

$$\chi^{2} = \sum_{0}^{d} \left[v_{drift,meas} - \left(\frac{\mu_{0,e}E}{\left(1 + \left(\frac{\mu_{0,e}E}{v_{sat,e}} \right)^{\beta_{e}} \right)^{\frac{1}{\beta_{e}}}} + \frac{\mu_{0,h}E}{\left(1 + \left(\frac{\mu_{0,h}E}{v_{sat,h}} \right)^{\beta_{h}} \right)^{\frac{1}{\beta_{h}}}} \right) \right]^{2}$$

• Laser beam has a width of ~ 8 μ m. At the sensor boundaries, the beam is not fully inside the detector and the measured drift velocity falls to zero softly (no sharp edges)

$$v_{drift}(c) = \int_{c-\sigma}^{c+\sigma} v_{drift}(z) G(z-c) dz$$

Magnitude of the collection time reproduced, but worse agreement than with VTT-N

 $\sim 20\%$ difference in the electric filed estimated from collection time and from vdrift

²⁰¹²¹¹⁰¹¹⁶⁵⁵²⁷_FZ320N_03_Badd_1

Fails:

Some collection times in HPK are **flat, as well as the vdrift estimated from raising edge:** Possible explanation:

E-field is too high, electrons and holes have almost same speed ...

BUT tcoll is too long (10 ns!!)

Conclusions

- Calculated E-field from vdrift in eTCT depends on the absolute value of rise time chosen.
- A method was proposed to fix this normalization, using the measured collection time.
- The collection time is used to get a first estimate of the E-field. This E-field is used to scale the measured drift profile. The final E-field is obtained from a fit to vdrift.

➔ We use a 2 fit approach because border effects are better reproduced in drift velocity than in the collection time profiles

Next steps:

- Apply method to unirradiate detectors below Vdep ... almost finished
- Aply method to irradiated detectors ... next RD50 meeting?

BACKUP

Analysis of eTCT pulses

Calculating vdrift normalization

Method #1: Ne,h from Q(z)

vdrift known from eTCT up to a normalization constant.

• Ne,h pairs can be extracted from Q(z), at V>depletion: $Q(z) \sim Ae_0 N$

$$Q(z) = Ae_0 N(z) \int_{0}^{tint} \frac{(v_e(t) + v_h(t))}{d} dt \Rightarrow Q(z) = Ae_0 N(z)$$

$$= 1 \text{ depleted}$$

$$< 1 \text{ non-depleted, and function of } (z, V)$$

- Take average of N(z): $\overline{N} = \frac{1}{N_d} \sum_{i=0}^{n} N(z_i)$
- Calculate "normalized averaged" drift velocity: ... normalized to N

 - ... averaged for 400 ps

Equivalent to drift velocity due to 1 pair e-h

Neff for HPK is the biggest \rightarrow highest E-field.

Doping profiles of deep diffused FZ

N_{eff} – depth profile from C-V characteristics Calculation of depth profile via: $d(1/C^2)$ N-Type Effective doping concentration N_{eff} (cm⁻³) FZ 120 µm $A^2 \varepsilon \varepsilon_0 q_0 N_{eff}$ dVΡ FZ 200 µm 10¹⁴ • FZ 320 μm P-Type - FZ 120 μm Reason: Deep diffusion process - FZ 200 μm Ρ - FZ 320 μm N_{eff} deep diffusion 10¹³ Ρ 120 μm 200 µm Ν 320 µm 10¹² Front wafer bonding 50 100 150 200 250 300 Diode depth (µm) depth

Inhomogeneous doping profiles in thin diodes

A. Junkes, HPK meeting CERN

21.01.13

Correlations in vdrift fits

If we use a polynomial for the electric field, then we cannot extract the vdrift normalization using only the Vbias equation, since the parameters would be all correlated

$$\left(V_{bias} - \int_{0}^{d} E(z) dz\right)^{2} = \left(Vbias - k \int_{0}^{d} (p_{0} + p_{1}z + p_{2}z^{2}) dz\right)^{2}$$

k is 100 % correlated to p0,p1,p2,...

