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Edge-TCT technique

ETCT method: G. Kramberger et al., IEE TNS, VOL. 57, NO. 4, August 2010, p. 2294 

Laser

Sensor box

→ 80 ps FWHM laser 1060 nm
→ XYZ motion
→ T controlled measurements
→ In-situ annealing

• DAQ by CERN SSD 
(N. Pacifico, M. Gabrysch, I. Dolenc)

• Spatial resolution given by 
laser width (vertical). Measure-
ments averaged over strip width 
(horizontal).

• SSD setup: 5th strip AC readout. 
Bias Ring grounded, Backside 
biased.

Setup Featuring:

• Charge carriers created at 
selected depth in the bulk

• Characterization technique 
developed by Ljubljana group. It 
allows to extract sensor 
properties (vdrift, efficiency, CCE) 
as a function of depth. 
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Untreated edge After coarse-polishing After fine polishing

Coarse-polishing Fine-polishing

Ready for 
measurement

BaddBadd



  

ve t≈0vh t≈0 =
d⋅I e ,h t≈0 ; z 

Ae0 N e , h z 

Calculation of drift velocity:
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I e ,h t , z =Ae0 N e , h[exp 
−t
e , h

] ve  z ,t vh z , t 

d

• eTCT provides a profile of the instantaneous “trapping-free” drift velocity ve+vh



  

ve t≈0vh t≈0 =
d⋅I e ,h t≈0 ; z 

Ae0 N e , h z 

1) Number of e-h pairs N
e,h

(z) → for non-irrad detectors we can calculate it 

from the charge collected (see backup).

Uncertainties on the measured drift velocity:

vdrift  z i=
d

Ae0 N e , h

⋅
1

N 400
∑
j=0

400 ps

I t j , z i

2) BUT how is I(t~0;z) defined?? I use an average of I(t) over 400 ps:

Two unknowns:
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I e ,h t , z =A e0 N e ,h [exp 
−t
e ,h

] ve  z ,t vh  z , t 

d

• eTCT provides a profile of the instantaneous “trapping-free” drift velocity ve+vh



  

Drift velocity for different t~0 definitions

So to extract the E-field we need a method not based in v
drift

⇓
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t<300 ps

t<500 ps
t<400 ps

t<600 ps

t<300 ps

t<500 ps
t<400 ps

t<600 ps
t<2 ns

Absolute vdrift ([a.u.]) for different 
averaging times 

Normalized vdrift ([a.u.]) for different 
averaging times 

Even if the relative information in the range [300-600] ps is the same, the 
absolute value of vdrift is different. 

Different averaging times, will lead to different absolute values of vdrift and 
therefore of E-field.



  

• In eTCT we can measure the collection time as a function of depth (t
coll

(z)). Different 

collection times at different injection depths.

• The collection time is measured as the time lapse between rise edge and falling edge of 
current pulse. 

Measuring collection time

End

Start
- Pulse start: calculated as 
intersection of baseline with straight 
line fit of the pulse raising edge.

- Pulse end: calculated as time 
needed to collect 98% of the total 
charge
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Calculating collection time

t
collection

(z)=Max  t
e
(z) , t

h
(z)  ;

The collection time can be calculated as the longest of the drifting times of 
the 2 types of carriers:

t e  z=∫
z

0
1

ve  z ' 
dz '

t h z =∫
z

d
1

vh z ' 
dz '

where
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v
e,h

 Jacoboni's parametrization

Depends on E-field:

Total
Electrons
Holes

vdrift =
0,e E

1 0, e E

v sat , e

e


1
e

▪ E(z) is a linear (non irrad.) 
▪ E(z) quadratic (irradiated) 



  

▪ We then extract E(z) from tcoll:


2
= ∑

z=0

d

[ t coll , meas z −tcollection ]
2

+
n+

p+

e
h

p-bulk

-

z=0

z=d

z

Calculating Electric field from collection time

t
collection

(z)=Max  t
e
(z) , t

h
(z)  ;

The collection time can be calculated as the longest of the drifting times of the 
carriers:

t e  z=∫
z

0
1

ve  z ' 
dz '

t h z =∫
z

d
1

vh z ' 
dz '

where

▪ Note that this method does not need the measured vdrift at all. 

▪ Once we extract the E-field →  we can calculate the “real” vdrift,  fixing the 
normalization issue.
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 Jacoboni's parametrization



  

Question: how much RC degrades the timing information?

Simulated ideal response of a diode

RC low pass signal (C=10 pF)

▪ Simulated response for an over-depleted diode with C=10 pF, d=296 µm, 
light injection 50 µm below the strips.

▪ ETCT equivalent circuit behaves like an amplifying low pass filter
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N bulk P bulk

▪ Simulation using overdepleted diode, no diffusion considered
▪ Below C=10 pF, the contribution of RC to the collection time is below the experimental error. 
▪ Higher spread with electrons.

-
p+

n+

h
e

n-bulk

+

z=0

z=d

z

n+

p+

+

e
h

p-bulk

-

te>th te<th te>th

Simulated effect of RC low pass filter
Question: how much RC degrades the timing information?

te<th
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Question: How much capacitance is seen by the amplifier in eTCT?

Micron_FZ2328-11_NonP_3 Micron_FZ2328-11_NonP_3

Cac=54 pF Cint=0.35 pF (DC)

eTCT: 5th strip connected to amplifier, Bias Ring is grounded, backplane biased

Micron: Ctot=0.62 pF   Cb=0.3    ; Cint=0.35  ; Cac=54 pF
VTT:     Ctot=0.48 pF   Cb=0.18  ;  Cint=1.04 ; Cac=32 pF 
Badd:   Ctot=2.254 pF

C
int

Scope

±HV

BR grounded

C
int

C
AC

C
b

C
b

C
b

C tot=
C AC C strip

C ACC strip

C strip=C b
2⋅C bC int

CbC int

Conclusion: RC smearing should not be important for depleted sensors
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Fitting method for non-irradiated detectors

1) Fit collection time using linear E-field → E
coll

(z) 

Note: for the moment, method applied only to unirradiated det. at V ≥Vdep

3) Fit v
drift

  and extract E
vdrift

(z)

vdrift =
0,e E coll

10,e E coll

v sat ,e

e


1
e

2) Calculate theoretical drift veloctity: 

Scale measured drift velocity to theoretical
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Starting parameters for non-irradiated detector

▪ Conditions for the field (V≥V
dep

):

E  z =
V bias

d
−2

V dep

d 2
⋅z−

d
2
=a'b '⋅ z−

d
2


▪ If we fix parameter a' in the fit, the V
bias

 condition is fulfilled by construction
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V bias=∫
0

d

E  zdz=∫
0

d

ab z dz ⇒ a

E(z=d)=0  at V=V
dep

 ⇒ b parameter

▪ Far from electrodes, E-field must resemble that of a diode

E  z =ab z



  

▪ We minimize a χ2 function that depends on polynomial coefficients of the E-field

Fit of v
drift

 with border effects

▪ Laser beam has a width of ~ 8 µm. At the sensor boundaries, the beam is 
not fully inside the detector and the measured drift velocity falls to zero 
softly (no sharp edges)

vdrift c=∫
c−

c

vdrift  zG  z−c dz
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
2
= ∑

0

d

[vdrift ,meas−
0, e E

1 0,e E

v sat , e

e


1
e


0, h E

10, h E

v sat ,h

h


1
h ]
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Measured and fitted collection time (VTTN, Micron, HPK FZ320Y)

Blue: E
coll  

(E-field from t
coll

 fit)

Red: E
vdrift 

(E-field from v
drfitl

 fit)

Measured collection time
Collection time fit
Fit not good at sensor boundaries

Scaled v
drift

Vdrift fit, using E
coll

 as starting 

parameter
Good fit at boundaries

20130316131657_VTT_MCZN_1

MCZ 320 µm, N-bulk, Vdep=130V
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Measured and fitted collection time (VTTN, Micron-P, HPK FZ320Y)

FZ 294 µm, P-bulk

20120802001225_Micron_FZ2328-11_NonP_3
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Magnitude of the collection 
time reproduced, but worse 
agreement than with VTT-N

~20% difference in the electric 
filed estimated from collection 
time and from vdrift

Good vdrift fit!!



  

Measured and fitted collection time (VTT, Micron, HPK FZ320N)
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20121101165527_FZ320N_03_Badd_1

FZ 301 µm dd, N-bulk, Vdep=210 V
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Fails:

20120917103639_FZ320Y_06_Badd_1

20

Some collection times in HPK are flat, as well as the vdrift estimated from raising edge: 
Possible explanation: 
E-field is too high, electrons and holes have almost same speed …
BUT tcoll is too long (10 ns!!)

Vdep=-280V, 296 µm
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  -80-80
-100-100
-120-120
-140-140
-160-160
-180-180
-200-200
-220-220
-240-240
-260-260
-280-280
-300-300

-360-360
-380-380

Deconvolution changes 
offset, but not the shape
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▪ Calculated E-field from vdrift in eTCT depends on the absolute value of rise time chosen.

▪ A method was proposed to fix this normalization, using the measured collection time.

▪ The collection time is used to get a first estimate of the E-field. This E-field is used to 
scale the measured drift profile. The final E-field is obtained from a fit to vdrift.

➔ We use a 2 fit approach because border effects are better reproduced in drift 
velocity than in the collection time profiles

Next steps:

▪ Apply method to unirradiate detectors below Vdep … almost finished

▪ Aply method to irradiated detectors       … next RD50 meeting?

Conclusions
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BACKUP



  

I(t,z)

Q  z=∫
tleft

tint

I t , zdt

“Efficiency(z)”

“Avg. drift velocity(z)”

Analysis of eTCT pulses

Micron

tinttleft

I e ,ht =A e0 N e , h[exp 
−t
e ,h

] v e  zvh z

d

vd= ∫
tleft

tleft0.4ns

I t , z dt
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Thickness 
as 2-Erf“Charge Collection (CC)”

CC=∫
0

d

Q  z dz



  

Calculating vdrift normalization Method #1: Ne,h from Q(z)

vdrift known from eTCT up to a normalization constant.

Q  z =Ae0 N  z ∫
0

tint ve t vht 

d
dt ⇒ Q  z =A e0 N  z 

=1 depleted
<1 non-depleted, and function of (z,V)

• Ne,h pairs can be extracted from Q(z), at V>depletion: Q(z)~Ae
0
N 

• Take average of N(z): N=
1

N d
∑

0

d

N  z i 

vdrift z i=
d

Ae0 N
1

N 400
∑
j=0

400 ps

I t j , z i 

• Calculate “normalized averaged” drift velocity:
… normalized to N
… averaged for 400 ps

Normalized Averaged

Equivalent to drift velocity 
due to 1 pair e-h



  

        Micron VTT FZ320N/Y
Neff [cm-3]~   2.3e11 1.5 e12 2e12 / 3e12
Vdep [V]~   25 130      212   / 280
ρ[kΩ .cm]~   20 2  1.5   / 
Cend[pF]~   38 35  48   / 52

 
1.2*Vdep~ 30 160  260  / 336

Neff for HPK is the biggest → highest E-field. 



  



  

V bias − ∫
0

d

E  z dz 
2

=Vbias−k∫
0

d

 p0 p1 z p2 z2
dz 

2

If we use a polynomial for the electric field, then we cannot extract the 
vdrift normalization using only the Vbias equation, since the parameters 
would be all correlated

k is 100 % correlated to p0,p1,p2,...

Correlations in vdrift fits



  

Total
Electrons
Holes

vdrift =
0,e E

10, e E

v sat , e

e


1
e
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