

Calculating the electric field from eTCT measurements

Marcos Fernández García, I. Vila IFCA-Santander (Spain) & M. Gabrysch, C. Gallrapp, M. Moll, H. Neugebauer CERN

Work developed at the SSD lab at CERN

Join us for the 22nd RD50 Workshop at the **University of New Mexico,** Albuquerque, New Mexico, USA

June 3-5, 2013 http://panda.unm.edu/RD50_Workshop/ A Workshop about Radiation Hard Semiconductor Devices for Very High Luminosity Colliders.

Chaired by Michael Moll, (CERN) and **Sally Seidel (University of New Mexico)**

Abstract deadline extended to: May 13, 2013

June 3-5 2013, 22nd RD50 Workshop, University of New Mexico, Albuquerque, New Mexico, USA

Contents

eTCT intro

Issues with the calculation of v_{drift} in eTCT

Collection time

Extraction of E-field for non-irradiated detectors

Edge-TCT technique

• Characterization technique developed by Ljubljana group. It allows to extract sensor properties (vdrift, efficiency, CCE) **as a function of depth.**

• Charge carriers created at **selected depth** in the bulk

• Spatial resolution given by laser width (vertical). Measurements averaged over strip width (horizontal).

• SSD setup: 5th strip AC readout. Bias Ring grounded, Backside biased.

Setup Featuring:

- \rightarrow 80 ps FWHM laser 1060 nm
- \rightarrow XYZ motion
- \rightarrow T controlled measurements
- \rightarrow In-situ annealing

• DAQ by CERN SSD (N. Pacifico, M. Gabrysch, I. Dolenc)

Calculation of drift velocity:

• eTCT provides a **profile** of the instantaneous "trapping-free" drift velocity ve+vh

$$
I_{e,h}(t,z) = Ae_0 N_{e,h} \left[exp\left(\frac{-t}{\tau_{e,h}}\right) \frac{v_e(z,t) + v_h(z,t)}{d} \right]
$$
\n
$$
v_e(t \approx 0) + v_h(t \approx 0) = \frac{d \cdot I_{e,h}(t \approx 0, z)}{A e_0 N_{e,h}(z)}
$$

Uncertainties on the measured drift velocity:

• eTCT provides a **profile** of the instantaneous "trapping-free" drift velocity ve+vh

$$
I_{e,h}(t,z) = Ae_0N_{e,h}\left[\exp\left(\frac{-t}{\tau_{e,h}}\right)\right]\frac{v_e(z,t) + v_h(z,t)}{d}
$$
\n
$$
v_e(t \approx 0) + v_h(t \approx 0) = \frac{d \cdot I_{e,h}(t \approx 0,z)}{A e_0 N_{e,h}(z)}
$$

Two unknowns:

1) Number of e-h pairs $N_{e,h}(z) \rightarrow$ for non-irrad detectors we can calculate it from the charge collected (see backup).

2) BUT how is I(t~0;z) defined?? I use an average of I(t) over 400 ps:

$$
v_{drift}(z_i) = \frac{d}{Ae_0 N_{e,h}} \cdot \frac{1}{N_{400}} \sum_{j=0}^{400 ps} I(t_j, z_i)
$$

Absolute vdrift ([a.u.]) for different averaging times

Normalized vdrift ([a.u.]) for different averaging times

Even if the relative information in the range [300-600] ps is the same, the **absolute** value of vdrift is different.

⇓ **Different averaging times**, will lead to **different absolute values of vdrift** and therefore of E-field.

So to extract the E-field we need a method not based in v_{drift}

Measuring collection time

• In eTCT we can **measure** the collection time as a function of depth (t_{coll}(z)). Different collection times at different injection depths.

• The collection time is **measured** as the time lapse between rise edge and falling edge of current pulse.

intersection of baseline with straight line fit of the pulse raising edge.

- Pulse end: calculated as time needed to collect 98% of the total charge

+ Calculating collection time

 $\overline{n+}$

e

 $z=0$

z

z=d

h

p+

-

p-bulk

The collection time can be **calculated** as the longest of the drifting times of the 2 types of carriers: \overline{O} 1

$$
\mathsf{t}_{\text{collection}}(\mathsf{z}) = \mathsf{Max}\left[\mathsf{t}_{\mathsf{e}}(\mathsf{z})\,,\,\mathsf{t}_{\mathsf{h}}(\mathsf{z})\right]; \quad \text{where} \quad \left\{\begin{array}{c} t_{e}(z) = \int_{z} \frac{1}{v_{e}(z')} \, dz'\\ t_{h}(z) = \int_{z}^{d} \frac{1}{v_{h}(z')} \, dz' \end{array}\right.
$$

*v e,*h **Jacoboni's parametrization**

Depends on E-field:

- \blacktriangleright E(z) is a linear (non irrad.)
- \blacktriangleright E(z) quadratic (irradiated)

+ Calculating Electric field from collection time

The collection time can be calculated as the longest of the drifting times of the carriers: 0 1

t_{collection}(z)=Max
$$
\left(t_e(z), t_h(z)\right)
$$
; where

$$
t_h(z) = \int_z^d \frac{1}{v_e(z')}\,dz'
$$

$$
t_h(z) = \int_z^d \frac{1}{v_h(z')}\,dz'
$$

$$
v_{eh}
$$
Jacobian's parametrization

 \blacksquare We then extract $E(z)$ from tcoll:

$$
\chi^2 = \sum_{z=0}^{d} \left[t_{coll, \text{meas}}(z) - t_{collection} \right]^2
$$

- Note that this method does **not need** the **measured vdrift** at all.
- Once we extract the E-field \rightarrow we can calculate the "real" vdrift, fixing the normalization issue.

Question: how much RC degrades the timing information?

ETCT equivalent circuit behaves like an amplifying low pass filter

▪ Simulated response for an over-depleted diode with C=10 pF, d=296 µm, light injection 50 µm below the strips.

Question: how much RC degrades the timing information?

Simulated effect of RC low pass filter

- Simulation using overdepleted diode, no diffusion considered
- **Below C=10 pF**, the contribution of RC to the collection time is below the experimental error.
- **.** Higher spread with electrons.

Question: How much capacitance is seen by the amplifier in eTCT?

eTCT: 5th strip connected to amplifier, Bias Ring is grounded, backplane biased

Conclusion: RC smearing should not be important for depleted sensors

1) Fit collection time using linear E-field $\rightarrow E_{coll}(z)$

2) Calculate theoretical drift veloctity:

Scale **measured** drift velocity to theoretical

3) Fit
$$
v_{\text{drift}}
$$
 and extract $E_{\text{vdrift}}(z)$

Note: for the moment, method applied only to unirradiated det. at V ≥Vdep

$$
v_{\text{drift}} = \frac{\mu_{0,e} E_{\text{coll}}}{\left(1 + \left(\frac{\mu_{0,e} E_{\text{coll}}}{v_{\text{sat},e}}\right)^{\beta_e}\right)^{\frac{1}{\beta_e}}}
$$

Starting parameters for non-irradiated detector

▪ Far from electrodes, E-field must resemble that of a diode

$$
E(z) = a + bz
$$

■ Conditions for the field (V≥V $_{\rm dep}$):

$$
V_{bias} = \int_{0}^{d} E(z) dz = \int_{0}^{d} (a+bz) dz \implies a
$$

\n
$$
E(z) = \frac{V_{bias}}{d} - 2 \frac{V_{dep}}{d^{2}} \cdot (z - \frac{d}{2}) = a' + b' \cdot (z - \frac{d}{2})
$$

\n
$$
E(z) = \frac{V_{bias}}{d^{2}} - 2 \frac{V_{dep}}{d^{2}} \cdot (z - \frac{d}{2}) = a' + b' \cdot (z - \frac{d}{2})
$$

 \bullet If we fix parameter a' in the fit, the V_{bias} condition is fulfilled by construction

Fit of v^{drift}</sub> with border effects

• We minimize a χ^2 function that depends on polynomial coefficients of the E-field

$$
\chi^{2} = \sum_{0}^{d} \left[v_{drift, meas} - \left(\frac{\mu_{0,e} E}{1 + \left(\frac{\mu_{0,e} E}{v_{sat,e}} \right)^{\beta_{e}} \right)^{\frac{1}{\beta_{e}}} + \frac{\mu_{0,h} E}{1 + \left(\frac{\mu_{0,h} E}{v_{sat,h}} \right)^{\beta_{h}} \left| \frac{1}{\beta_{h}} \right|} \right]^{2}
$$

Example 2 Laser beam has a width of \sim 8 µm. At the sensor boundaries, the beam is not fully inside the detector and the measured drift velocity falls to zero softly (no sharp edges)

$$
v_{drift}(c) = \int_{c-\sigma}^{c+\sigma} v_{drift}(z) G(z-c) dz
$$

Magnitude of the collection time reproduced, but worse agreement than with VTT-N

~20% difference in the electric filed estimated from collection time and from vdrift

Good vdrift fit!!

20121101165527_FZ320N_03_Badd_1

Fails:

Some collection times in HPK are **flat, as well as the vdrift estimated from raising edge:** Possible explanation:

E-field is too high, electrons and holes have almost same speed …

BUT tcoll is too long (10 ns!!)

Conclusions

- Calculated E-field from vdrift in eTCT depends on the absolute value of rise time chosen.
- A method was proposed to fix this normalization, using the measured collection time.
- The collection time is used to get a first estimate of the E-field. This E-field is used to scale the measured drift profile. The final E-field is obtained from a fit to vdrift.

➔ We use a 2 fit approach because border effects are better reproduced in drift velocity than in the collection time profiles

Next steps:

- Apply method to unirradiate detectors below Vdep ... almost finished
- Aply method to irradiated detectors **Example 2.1** mext RD50 meeting?

BACKUP

Analysis of eTCT pulses

Calculating vdrift normalization Method #1: Ne,h from Q(z)

vdrift known from eTCT up to a normalization constant.

 $v_{\text{drift}}(z_i) =$

• Ne,h pairs can be extracted from $Q(z)$, at V>depletion: $Q(z) \sim Ae_0N$

tint v^e tv ^h t ^Qz=*Ae*⁰ *^N z*∫ *dt* ⇒ *Qz*=*Ae*⁰ *N z d* 0 =1 depleted <1 non-depleted, and function of (z,V) *d* 1 ∑ • Take average of N(z): *N* = *N zⁱ Nd* 0 • Calculate "normalized averaged" drift velocity: … normalized to N

d

 $Ae_{0}\overline{N}$

… averaged for 400 ps

 0.15

 $-170V$
 $-180V$
 $-180V$
 $-200V$

 $\begin{array}{c}\n 240 \text{ V} \\
-240 \text{ V} \\
\hline\n 2 \text{ [TIII1]} \n \end{array}$

 0.2

Normalized Averaged

1

∑ *j*=0

 $I(t_j, z_i)$

400 *ps*

 $\overline{N}_{\ 400}$

Neff for HPK is the biggest \rightarrow highest E-field.

Doping profiles of deep diffused FZ

Inhomogeneous doping profiles in thin diodes

A. Junkes, HPK meeting CERN

四见

21.01.13

Correlations in vdrift fits

If we use a polynomial for the electric field, then we cannot extract the vdrift normalization using only the Vbias equation, since the parameters would be all correlated

$$
\left(V_{bias} - \int_{0}^{d} E(z) dz\right)^{2} = \left(Vbias - k \int_{0}^{d} (p_{0} + p_{1}z + p_{2}z^{2}) dz\right)^{2}
$$

k is 100 % correlated to p0,p1,p2,...

