

A Portable Telescope Based on the Alibava System for Test Beam Studies

Dean Forshaw*, Salvador Marti, Sven Wonsak, Gianluigi Casse, Ilya Tsurin

- Alibava telescope setup
- Devices Under Test (DUT's)
- Telescope performance and analysis software
- Preliminary DUT performance
- Telescope upgrade roadmap

Alibava telescope setup

Telscope + mechanics

All electronics – Alibava boards (one for each XYT module) + Master controller FPGA baord

- Chiller cooling for peltier element + radiator
- LV power supply for scintillators
- HV power supply for XYT modules + DUT

XYT module

XYT modules:

- 300um thick Micron strip sensors 1cm²
- Sensors mounted back to back perpendicular to each other
- Current design uses only 2 beetle chips
- XYT upgrade will feature larger sensors utilizing more beetle chips
- Additional XYT stations are planned featuring micro-strip sensors

DUT's

Detector	Pitch/ width	Dose	notes	No.	Designation	Description	Thickness	Bulk resistivity
GLC06	P80 W60	1E15neq		#56	Liv-2935-7-1-13-L	Single-charged P+ junction implant, no diffusion	300µm	13kΩ/cm
GLC07	P80 W25	1E15neq		#57	Liv-2935-7-1-14-L	Single-charged P+ junction implant, no diffusion	300µm	13kΩ/cm
GLC08	P80 W60	5E15neq		#58	Liv-2488-7-1-13H	Single-charged P+, no diffusion	675μm	8kΩ/cm
GLC09	P80 W25	5E15neq		#62	Liv-2488-7-1-14H	Single-charged P+, no diffusion	675µm	8kΩ/cm
GLC10	P80 W25 I10	1E15neq	interstrip, biased	#48	Liv-2935-7-2-6-L	Single-charged P+ junction implant, no diffusion	300µm	13kΩ/cm

- DUT's are from Liverpool RD50 Charge Multiplication wafer
- Sensors have all been pre-tested in lab see talk yesterday by Sven Wonsak
- Data taken at DESY 29TH April 12th May, 5GeV electrons

LIVERPOOL

Track Characteristics

- Output from 100,000 evt sample
- DUT excluded
- Track candidates require 7 good plane hits
- Tracking and alignment software still under development
- Alignment has to be done by hand

 residual dependent auto
 alignment
- Material and dE/dx for tracking not fully implemented
- Straight tracks only

Track Visualization

02/06/2013

All Hits - XYT stations

BEAM EXITS

- Station refers to each silicon sensor
- White is all hits seen by XTY stations
- Blue shows 'on track' hits
- On Track refers to hits associated with tracks
- Usual Alibava/Beetle noise seen – noise suppression working well

BEAM ENTERS

Y station

All Hit Clusters - XYT stations

02/06/2013

Residual map – XYT stations

Residuals are calculated for each XTY module and each X/Y station

Inner module/station residuals calculated – 2mm² blocks

te te

UNIVERSITY OF

IVERPOOL

Residuals – XYT stations

- Left shows XYT module averaged residuals
- Right shows inner station residuals

XYT Station Efficiency

- Each X/Y station shows excellent efficiency
- Some inefficiency's seen at edges

 beetle generally have more noise at ends channels

 non perfect alignment with respect to beam

02/06/2013

Cluster Charge – XYT stations

BEAM EXITS

BEAM ENTERS

 Calibration from adc to electrons is ~150

*each board has a slightly different calibration

Charge of all clusters in module 3 (XYT2) plane 400

Y station

Charge of all clusters in module 1 (XYT3) plane 201

Cluster Charge – XYT stations

- All X/Y stations show similar charge collection with respect to each other
- Calibration from adc to electrons is ~150

*each board has a slightly different calibration

BEAM ENTERS

Yields ~23,000e

X station

Charge of used clusters in module 3 (XYT2) plane 401

Q = 155.75 ± 0.44

Charge of used clusters in module 1 (XYT3) plane 201

Charge of used clusters in module 0 (XYT4) plane 101
_____ Q =162.83 ± 0.42

02/06/2013

Cluster size increased away • from 1

UNIVERSITY OF LIVERPOOL

- Don't expect very big cluster due to strip pitch/ width and low track multiplicity
- Noisy channels are removed and don't influence DUT results
- Average DUT hit efficiency 92.5% - for the whole sensor

Efficiency in module 2 (DUT) plane 300

DUT - Overview

Charge of all clusters in module 2 (DUT) plane 300

Charge of used clusters in module 2 (DUT) plane 300

- Left shows full CC spectrum in white, and CC from used clusters in blue
- Right shows same spectrum but for used clusters only

Charge Collection - Lab vs Telescope

- Discrepancy in telescope Charge collection due to change in exact adc -> e calibration
- Waiting for telescope to be shipped back to perform the calibration

VFRPC)(

DUT Efficiency vs Voltage

- Work still ongoing
- Alignment was done manually, poor efficiency at 1200V should increase with automatic alignment

- 6 module arms instead of 4 each fully moveable
- Larger sensors 15-20mm² for standard XYT modules
- Micro-strip XYT modules planned
- Firmware changes Allow greater than 2 beetles per Alibava board
 Allow access to onboard 64mb per Alibava board for caching
- Allow multiple mounting points for DUT's

- Telescope performs well
- Upgrades to both sensors and mechanics to improve tracking and acceptance for DUT's
- Tracking and alignment software still being developed
- Next step is data analysis with inclined tracks (data exists)