

22nd RD50 Workshop, 3-5 June 2013, Albuquerque, NM

SIMULATION OF DOUBLE JUNCTION IN IRRADIATED DETECTORS USING SILVACO TCAD

M. Golovleva, T. Tuuva Lappeenranta University of Technology, Finland

Simulation Task

The set of parameters for cross-test simulation:

Detector thickness ------ *d*=0.03 cm

Concentration of shallow donors (phosphorus) ----- N_{SD} = 6e11 cm⁻³

Bulk generated current calculated from

2- level trap model

Type of defect	Activation energy, eV	Trapping cross	Introduction rate, cm ⁻¹
		section, cm ²	
Deep donor	$E_{DD} - E_{V} = 0.48$	$\sigma_e = \sigma_h = 1e-15$	$G_{DD} = 1$
Deep acceptor	$E_{DA} - E_V = 0.595$	$\sigma_e = \sigma_h = 1e-15$	$G_{DA} = 1$

Bulk generated current calculated from

Not available in simulation

Single level model

Effective energy of current generating level----- E_i – 0.65 eV

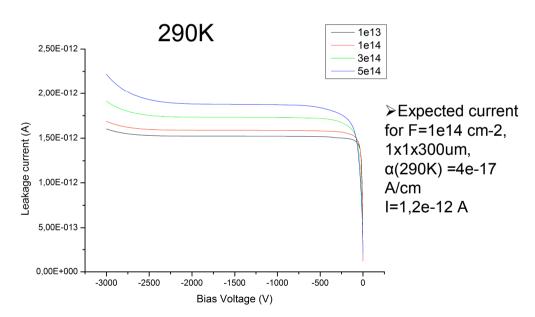
Effective cross-section of current generating level ----- $s_j = 1e-13cm^2$

Introduction rate of current generating level ----- $G_i = 1 \text{ cm}^{-1}$

Simulations are compared for:

T = 290K and 260K

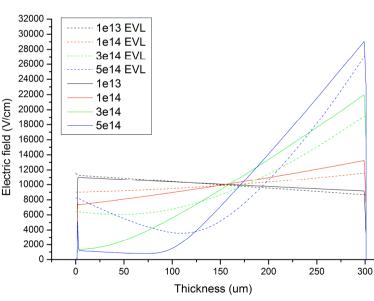
V=200V, 300V, 500V, 1000V at F = 1e15cm⁻²


F= 1e13, 1e14, 3e14, 1e15, 3e15 cm⁻² at V=300V

Original EVL defect model

- >Simple detector 1μm × 1 μm × 300 μm
- ➤Bulk doping [n-bulk]=6e11 cm⁻³
- ≻n+, p+ junction depth 1 μm

➤ Silvaco TCAD (5.16.3.R)


 \triangleright I= $\alpha \times F \times Vol$

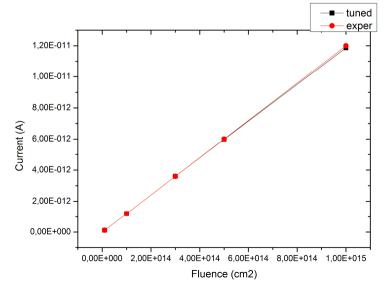
- >Does not match, decrease the current
- ➤ Tuning of the parameters

Reascaling of the energy levels:
Silvaco Eg=1.08 eV
E.level silvaco=E.level*Egsilvaco/Eg
Eacceptor=0.504eV
Edonor=0.46eV

300V

Modified EVL

> EVL

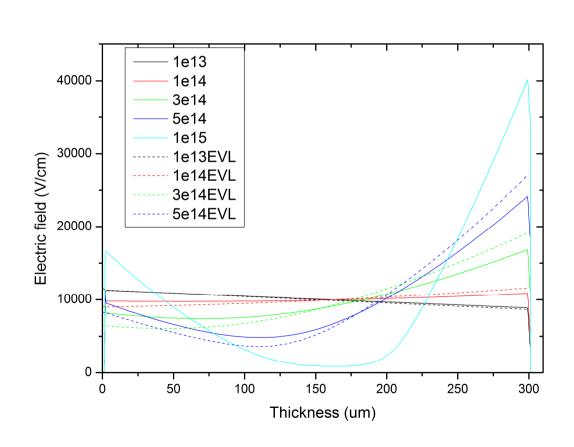

Type of defect	Activation energy, eV	Trapping cross section, cm ²	Introduction rate, cm ⁻¹
Deep donor	E_{DD} - E_{V} = 0.48	$\sigma_e = \sigma_h = 1e-15$	$G_{DD} = 1$
Deep acceptor	E_{DA} - E_V = 0.595	$\sigma_e = \sigma_h = 1e-15$	$G_{DA} = 1$

➤ Modified

Type of defect	Activation energy, eV	Trapping cross section,	Introduction rate,
		cm ²	cm ⁻¹
Deep donor	E_{DD} - E_{V} = 0.48	$\sigma_{\rm e} = 4e - 14 \sigma_{\rm h} = 1e - 14$	$G_{DD} = 1.63$
Deep acceptor	$E_{DA} - E_V = 0.59$	$\sigma_{\rm e} = 4e - 14 \ \sigma_{\rm h} = 1e - 14$	$G_{DA} = 1.63$

290K

➤ Good agreement of experimental value of current and modified simulation


Modified EVL, 290K

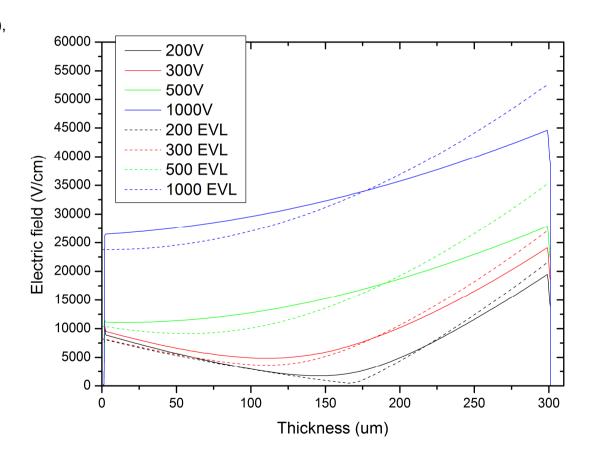
Simulations at 290K

Trap introduction rate=1.63 Acceptor(σ n =4e-14 cm2, σ p=1e-14 cm2), Donor (σ n =4e-14 cm2, σ p =1e-14 cm2) τ 0 = 1e-3 sec

➤ Activation energies as in EVL model

➤ Good agreement

300V

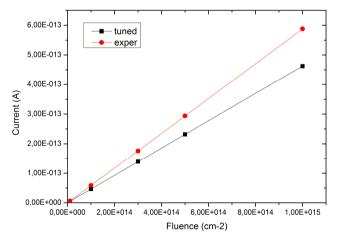

Modified EVL, 290K

Simulations at 290K

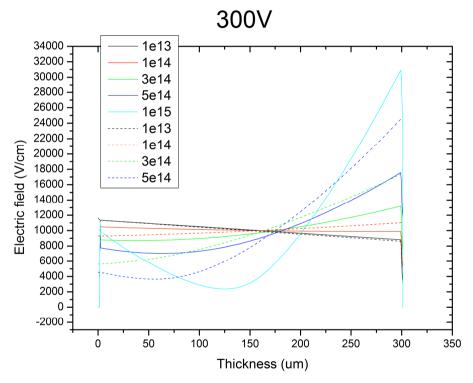
Trap introduction rate=1.63 Acceptor(σ n =4e-14 cm2, σ p=1e-14 cm2), Donor (σ n =4e-14 cm2, σ p =1e-14 cm2) τ 0 = 1e-3 sec

➤ Activation energies as in EVL model

F=5e14 cm-2



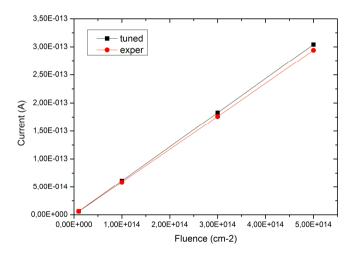
Modified EVL, 260K

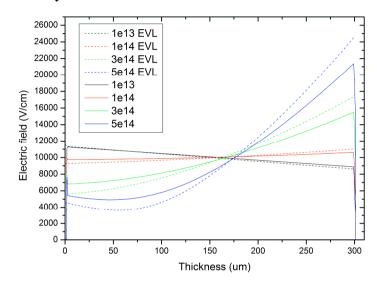

Simulations at 260K

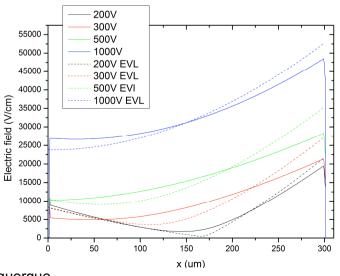
Trap introduction rate=1.63 Acceptor(σ n =4e-14, σ p=1e-14), Donor (σ n =4e-14, σ p =1e-14)] τ 0 = 1e-3 sec

➤ Activation energies as in EVL model

 $\alpha(260K) = 1.96e-18 \text{ A/cm}$

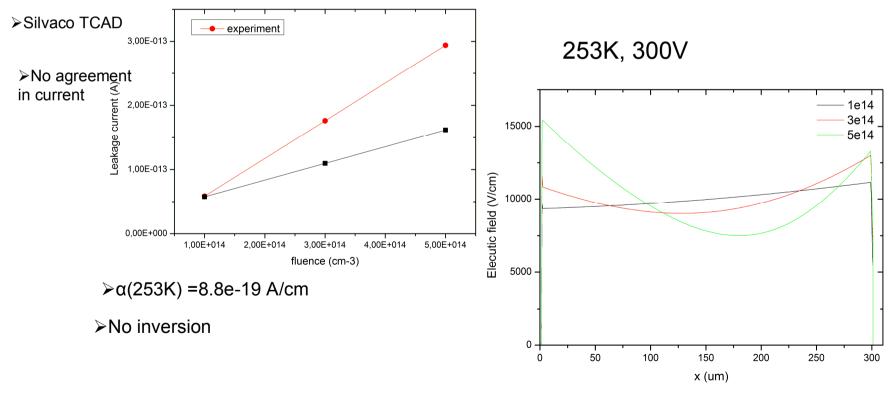



>Less number of traps are activated


Modified EVL, 260K

Simulations at 260K

Trap introduction rate=1.43 Acceptor(σ n =3e-14, σ p=1.5e-14), Donor (σ n =3e-14, σ p =1.5e-14) τ 0 = 1e-3 sec



EVL defect model, tuned by Robert Eber, KIT

253K

Type of defect	Activation energy,eV	Trapping cross section,cm2	Introduction rate,cm-	Acceptor/donor conc.,cm-
Deep acceptor	Ec-EDA=0.525	se=sh=1e-14	GDA=1.189	1.189*F+6.454e13
Deep donor	Ev+EDD=0.48	se=sh=1e-14	GDD=5.598	5.598*F-3.959e14

Summary

- Tuning of the defect parameters is a good way to modify EVLmodel
- For T=290K good agreement achieved by increasing of the introduction rate to 1.63 1/cm, decreasing the ratio of the hole and electron cross section to 0.25.
- It seems that Robert Eber's model doesn't work in Silvaco as good as in Synopsys