

RADIATION DAMAGE INDUCED BY 800 MEV PROTONS IN SILICON PAD DIODES

<u>Sinan Sagir</u>¹, Zaixing Mao¹, Alexandra Junkes^{1,2}, Ulrich Heintz¹, Meenakshi Narain¹, Alex Garabedian¹

> ¹ Brown University ² Hamburg University

June 3rd, 2013

22nd RD50 Workshop, Albuquerque, USA

2 OUTLINE

- Introduction and Motivation
- Sensor Overview
- Measurement Setup & Procedure
- Irradiation Results & Current Related Damage Rate
- Annealing Results
- Parameterization using Hamburg Model
- Summary

Motivation

- we report on results from irradiation of silicon diodes with 800 MeV protons at LANSCE
- material is well known to RD-50 and has been studied previously after irradiation with pions and 23 GeV protons
- CERN accelerator complex will be down in 2013 and 2014 and 23 GeV protons will not be available
- are 800 MeV protons a viable substitute?

Sensor Overview

4

Following diodes provided by RD50 collaboration have been studied:

Material	Туре	Thickness (µm)	Active Area (mm ²)	Initial Dep. Voltage (V)	Initial N _{eff} (cm ⁻³)	Resistance (kΩcm)	Manufacturer (Erfurt)
DOFZ	n	285	25	46.30	7.497E+11	5.560	CiS
FZ	n	285	25	76.42	1.237E+12	3.710	CiS
MCz	n	300	6.25	281.45	4.128E+12	1.049	CiS
Epi	n	150	6.25	146.24	8.048E+12	0.534	CiS
Epi	n	50	25	124.94	6.573E+13	0.066	CiS

FZ = Float Zone

- DOFZ = Diffusion Oxygen Enriched FZ
- MCz = Magnetic Czochralski
- Epi = Epitaxially grown

Irradiation & Annealing

5

Sensors were irradiated with 800 MeV protons at LANSCE proton facility (Los Alamos):

Fluences ($\kappa = 0.71$):	FZ	DOFZ	Epi50	Epi150	MCz
$1.8 \mathrm{x} 10^{13} \mathrm{MeV} \mathrm{n_{eq}} / \mathrm{cm}^2$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$4.3 ext{x} 10^{13} ext{ MeV } n_{eq}^{2} / ext{cm}^{2}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$1.3 \mathrm{x} 10^{14} \mathrm{MeV} \mathrm{n_{eq}} / \mathrm{cm}^2$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$4.6 \mathrm{x} 10^{14} \mathrm{MeV} \mathrm{n_{eq}} / \mathrm{cm}^2$	×	×	\checkmark	\checkmark	\checkmark

Annealing Temperature	80^{0} C			
Annealing Steps (min)	2, 4, 8, 16, 20, 40, 80, 160, 240, 480, and 960 minutes			

The sensors have been kept at $< -20^{\circ}$ C when no measurement is ongoing to avoid further unknown annealing.

CV-IV

90 112

3.2

ic Current (µA)

0.3

300

Measurements:

- with GR grounded
- at room temperature (~ 20°C)
- at 10kHz for CV

Determination of sensor characteristics from IV-CV measurements:

- Scale current to 20°C ref. value
- Plot CV in log-log scale
- Two linear fits on CV plot to find depletion voltage and end capacitance
- Leakage current is found from V_{dep}

10

Voltage (Volts)

Current related damage rate (α)

7

Change of current with **irradiation** after 8 min annealing at 80°C:

Depletion Voltage vs. Fluence

After 8 min annealing at 80°C:

- Depletion voltage drops for all materials after irradiation with lower fluences.
- for FZ, DOFZ and MCz, depletion voltage increases at higher fluences.
- for Epi there is no increase in the depletion voltage.
- Carry out annealing study to understand changes in material.

$$\left|N_{eff}\right| = \frac{2\varepsilon_0}{e} \frac{V_{dep}}{d^2}$$

FZ and DOFZ Annealing Results

Epi 50µm and 150µm Annealing Results

10

No type-inversion on Epi 50 μ m and 150 μ m diodes after irradiation.

However, depletion voltage for highest irradiated Epi 150 μm is increasing after 240 min. Looks like a type-inversion to a p-type-like diode!

MCz Annealing Results

11

- MCz diodes type-inverted after irradiation with fluence ≥ 1.3E14
- During short term annealing, depletion voltage first decreases then increases (type inversion p→n)
- During long term annealing, depletion voltage first decreases then increases (second type inversion n→p).
- This behavior has been confirmed by TCT measurements at Hamburg University.

Another way to determine type inversion

Sinan Sagir, Brown University - 22nd RD50 Workshop

June 3rd, 2013

IV Plots for MCz ($1.3x10^{14}$ MeV n_{eq}/cm^2) at different annealing steps:

13

Hamburg Model (FZ and DOFZ)

14

Summary

15

➢ Diode sensors made of n-type MCz, FZ and Epi grown silicon of different thicknesses were irradiated with 800 MeV protons at the LANSCE proton facility (Los Alamos).

➢ FZ, DOFZ and Epi diodes behave as expected from the results with pion and 23 GeV proton irradiations.

 \succ The type-inverted MCz sensors after irradiation appeared to be having multiple type-inversions during annealing process as opposed to the results found by measurements using 23 GeV protons in which no type-inversion was observed:

>The annealing study will be carried on for a few more steps up to 10000 minutes and the application of Hamburg Model to Epi and MCz diode results will be investigated.

≻We will further compare these results to irradiation with pions and 23 GeV protons

≻It looks like 800 MeV protons can replace 23 GeV protons for irradiation

References

- Michael Moll, "Radiation Damage in Silicon Particle Detectors", Ph.D. thesis, Hamburg, 1999.
- Gerhard Lutz, "Semiconductor Radiation Detectors", Springer-Verlag Berlin Heidelberg 1999, 2007.

FZ and DOFZ Hamburg Model Fitting Parameters

Sensor	Fluence [MeV n _{eq} /cm ²]	g _a [10 ⁻² cm ⁻¹]	$\begin{array}{c} \tau_a(80^0C) \\ [min] \end{array}$	g _Y [10 ⁻² cm ⁻¹]	τ _Y (80°C) [min]	N _C [10 ¹¹ cm ⁻³]	$N_{C} = \Delta N_{eff} (@8min)$ [10 ¹¹ cm ⁻³]
FZ	1.8e13	1.47 ± 0.28	3.15 ± 1.39	4.53 ± 0.26	214 ± 35	8.52 ± 0.33	8.95
FZ	4.3e13	1.34 ± 0.17	3.13 ± 0.89	7.69 ± 0.20	324 ± 23	14.91 ± 0.42	16.27
FZ	1.3e14	1.21 ± 0.22	1.26 ± 0.67	6.01 ± 0.31	386 ± 50	23.49 ± 1.40	24.42
DOFZ	1.8e13	1.14 ± 0.26	2.84 ± 1.48	3.64 ± 0.22	187 ± 33	4.50 ± 0.30	4.792
DOFZ	4.3e13	0.99 ± 0.15	2.40 ± 0.83	4.25 ± 0.17	312 ± 34	9.96 ± 0.35	10.551
DOFZ	1.3e14	0.86 ± 0.16	1.23 ± 0.69	2.51 ± 0.17	282 ± 51	14.67 ± 1.06	15.689

Calculated from \checkmark Hamburg model fit Closest annealing step to local minimum of $\Delta N_{\rm eff}$ vs. annealing time plot.

IV Plots for FZ ($1.3x10^{14}$ MeV n_{eq}/cm^2) in successive annealing steps:

IV Plots for Epi (4.3×10^{13} MeV n_{eq} /cm²) in successive annealing steps:

IV Plots for MCz ($1.3x10^{14}$ MeV n_{eq}/cm^2) in successive annealing steps:

Current vs. Voltage for Epi150um

Annealing of current related damage rate (α)

FΖ

DOFZ

Epi50

Epi150

MCz

1.47±0.21

 1.11 ± 0.10

4.21±1.18

 2.19 ± 0.30

 1.66 ± 0.16

3.15±0.62

 3.53 ± 0.50

33.16±4.67

22.04±3.10

15.98±1.80

4.93±0.06

4.73±0.04

2.21±1.40

 3.18 ± 0.34

4.06±0.17

4.26±0.13

4.39±0.08

 0.08 ± 2.71

 2.25 ± 0.60

3.38±0.30

Using all of the available data:

FZ

DOFZ

Epi50

Epi150

MCz

1.57±0.21

1.11±0.10

4.61±0.39

2.05±0.47

 1.63 ± 0.14

3.15±0.62

 3.53 ± 0.50

50.46±2.94

29.33±6.13

16.54±2.05

4.93±0.06

4.73±0.04

 0.18 ± 0.48

 2.26 ± 0.55

3.08±0.16

4.26±0.30

4.39±0.08

 -3.50 ± 0.92

 1.13 ± 0.94

 2.43 ± 2.81

After removing 4th fluences for MCz and Epi150: