

Investigation of Charge Multiplication in Silicon Strip Detectors 22nd RD50 Workshop 03.06.- 05.06.2013

Lokman Altan, T. Barvich, F. Bögelspacher, W. de Boer, A. Dierlamm, <u>Robert Eber</u> K.-H. Hoffmann, A. Nürnberg, P. Steck

Institut für Experimentelle Kernphysik

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Overview

Introduction

- Overview of sensor properties
- Comparison between neutron and proton irradiation
 - CCE
 - Signal to noise ratio
 - Leakage current
- Simulation: Which factors influence Charge Multiplication?
- Investigation of Charge Multiplication as a function of oxide charge

Summary

RD50 CM-Sensor: Properties

- P-type sensors
- 2 geometries
 - Depth d = 305 µm
 - Pitch $p = 80 \mu m$, width $w = 6 \mu m$ pitch $p = 80 \mu m$, width $w = 60 \mu m$
 - Width/pitch w/p = 0.075 and w/p = 0.75
 - Active area: 10.18 mm x 11.76 mm

2 irradiation

- Irradiations with protons in Karlsruhe
- Irradiations with neutrons in Ljubljana
- Fluence: 5*10¹⁵ n_{eq}/cm², 1*10¹⁶ n_{eq}/cm² and 5*10¹⁶ n_{eq}/cm²
- Annealing study: Several steps at 60°C and 80°C

Measurement Results

Strip Sensor Readout System with ALiBaVa Settings: T= -20°C, S/N 5/2 Cut

Comparison between proton and neutron irradiation (CCE)

Broad implants show usual annealing behaviour

- Beneficial annealing up to 150d
- Reverse annealing later

Narrow implants show difference between protons and neutrons: more CCE after neutron irradiation Charge multiplication?

Leakage Current

- Decrease of current after annealing, both for neutrons and protons
- Increase of current after annealing for neutron irradiation
- More CCE, more leakage current

Signal to Noise (s/n)

s/n for proton irradation independent of width

s/n for neutron irradation 25% larger for narrow strips

Results: p80-w6 & neutron irradiation

Simulation: Which factors influence CM?

Electric Field at the Strips

- F = 5e15 n_{eq}/cm²
- E-field highest at strip edges
- Slightly larger fields for narrow strips
- Impact ionization rate much higher at narrow strip edges (higher current at narrow implants)

CM: Influence of Strip Width on E-field

Possible explanation for difference between protons and neutrons

- Proton irradiation generates positive charge in the oxide / interface between silicon and oxide
- Neutron irradiation doesn't create much oxide / interface charge (Qox)
- Simulation with interface charge shows:
 - Electric field decreases at the strip with increasing charge

Irradiation Model: modified EVL model for neutrons, Later talk of Robert Eber

Investigation of CM as a function of oxide charge

oxide charge: gamma irradiation (x-ray tube)

- Sample with neutron irradiation (p80-w6, 5e15 n_{eq}/cm²) has been irradiated with xray tube to generate additional oxide charge in SiO₂
- Comparison with unirradiated sample
- After each step sample has been investigated with ALiBaVa readout system

dose [kGy]	sum dose [kGy]
50	50
50	100
100	200
100	300
100	400
100	500
300	800
300	1100

Expected dose at CMS

Charge Multiplication

oxide charge: results

- As expected, charge collection efficiency decreases up to 500kGy
- For higher dose CCE increases (Why?)
- Leakage current and signal to noise show same behaviour

oxide charge: unirradiated sample

600

800

800

000

000 dose (kGy)

200

- Charge collection efficiency is constant for different dose, CCE does not show a dependency
- signal to noise shows same behaviour
- Leakage current increases a bit with higher dose

200

p80-w6-no irradiation

400

p80-w6-no irradiation

CCE

1.1

0.9

0.8

29

U

Summary

- Only narrow strips show charge multiplication after neutron irradiation (F= 5*10¹⁵ n_{eq}/cm² & F= 1*10¹⁶ n_{eq}/cm²).
- Proton irradiated sample does not show charge multiplication
- F= 5*10¹⁶ n_{eq}/cm² (neutrons): Sensor almost dead, no charge multiplication
- Proton irradiation generates more charge in the oxide and reduces the electric field at the strips (Simulation)
- Measurement with x-ray shows the influence of oxide charge in SiO₂. For high doses, charge collection efficiency increases again.
 - Recombination of oxide charge?

Thanks for your attention

Backup

Electron Density at the Strips

Current

