

Studies on n-type silicon after <u>electron irradiation</u>

Roxana Radu^{a),b)}, Eckhart Fretwurst^{a)}, Robert Klanner^{a)}, Gunnar Lindström^{a)}, Ioana Pintilie^{b)}

a) Institute for Experimental Physics, University of Hamburg, Germany b) National Institute of Material Physics, Magurele, Bucharest, Romania

Outline

Motivation

Radiation-induced bulk damage

Results on electron irradiation from 1.5 to 15 MeV

2

Conclusions

- I. Joint project between NIMP Bucharest and University of Hamburg –" Electron irradiation of Si-diodes at E = 1 - 15 MeV' presented by Prof. G. Lindström at the last WODEAN Workshop in Bucharest, 13/14 May 2010
- *II.* "Comprehensive investigation on bulk radiation damage in defect engineered silicon - from point defects to clusters" – Project Director Ioana Pintilie, 2011

Aim: Identification of both the structure of the electrically active defects responsible for the electrical properties of irradiated silicon diodes and the possible reactions with different impurities in the material.

1) Irradiation with 1.5, 3.5, 6 and 15 MeV electrons – studies performed in Hamburg

- Electrical characterization (CV/IV) before/after irradiation - $V_{\rm dep}$ and $I_{\rm dep}$ space charge distribution, recombination-generation current also after annealing (isothermal and isochronal)

- Analysis of electrically active defects by means of DLTS and TSC methods before/after irradiation - correlation with results from diode characteristics

2) Electron induced damage in Si implanted with ¹⁷O and ¹³C – investigations performed in Bucharest

- Studies for defect identification by Electron Paramagnetic Resonance (EPR, ENDOR) methods - in defect engineered silicon (O enriched, O lean, C rich, C lean)
- Microstructural investigation of the extended and clustered defects by High Resolution-Transmission Electron Microscopy (HRTEM) - Identify the structure of the radiation-induced electrically active defects and establish the role of the impurities in their generation and kinetics.

Particle type	Damage created			
⁶⁰ Co-γ irradiation (1.1 and 1.3 MeV) $E_{rec.max} = 200 \text{ eV}$	<u>only point defects</u>			
Reactor neutron irradiation (1 MeV) $E_{rec.max} \sim 50 \text{ keV}$	<u>dominant cluster defects</u>			
High energy protons (23 GeV)	both point and cluster defects			
Threshold for formation of point defects : $E_{rec.} \sim 21 \text{ eV}$ Threshold for formation of cluster defects : $E_{rec.} \sim 1.2 \text{ keV}$				

Irradiation with electrons, from low (E_e =1,5 MeV) to higher energies (E_e =15 MeV), in order to study the difference between radiation-induced point and cluster defects

Motivation

2.

$$T_{max} = \frac{2T_e(T_e + 2m_ec^2)}{M_0c^2A}$$

$$T_{max} = \text{maximal energy transfer}$$

$$T_e = E_{e,kin.} = \text{electron kinetic energy}$$
A Akkerman et al. / Radiation Physics and Chemistry 62 (2001) 301–310
$$E_{e,kin.} = 1 \text{ MeV}, T_{max} = 154 \text{ eV}$$

$$E_{e,kin.} = 3.5 \text{ MeV}, T_{max} = 1.2 \text{ keV}$$

$$E_{e,kin.} = 6 \text{ MeV}, T_{max} = 3.2 \text{ keV}$$

$$E_{e,kin.} = 15 \text{ MeV}, T_{max} = 18.3 \text{ keV}$$

$$E_{e,kin.} = 30 \text{ MeV}, T_{max} = 71 \text{ keV}$$

New way to study the change from purely point to cluster-dominated effects

22nd RD50 Workshop, University of New Mexico, Albuquerque, USA, 3-5 June 2013

Target Depth (Å)

Materials and irradiation

Туре	Orientati on	d[µm]	N _D [cm⁻³]	<[O]>[cm ⁻³]	ρ [Ωcm]	Diffusion oxygenated
EPI	<111> <100>	50 100	6x10 ¹³ 1x10 ¹³	1x10 ¹⁷ 2.8x10 ¹⁷	50 300	- 24 h /1100°C
ST-FZ	<100>	280	8x10 ¹¹	1X10 ¹⁶	5x10 ³	-
DO-FZ	<100>	280	8x10 ¹¹	1.2x10 ¹⁷	5x10 ³	72 h /1150°C

Electron fluences: $1x10^{12} \rightarrow 1.5x10^{15}$ cm⁻², $E_e = 1.5 - 15$ MeV (for $E_e = 15$ MeV: $\Phi_{eq} = 2.7x10^{10} \rightarrow 4.1x10^{13}$)

Hardness factor (k)				
1.5 MeV	1.88x10 ⁻³			
3.5 MeV	6.50x10 ⁻³			
6 MeV	1.24x10 ⁻²			
15MeV	2.78x10 ⁻²			

Levels shown introduced by irradiation or by initial impurities
Energy levels in the band gap with impact on electrical sensor properties

Radiation-induced bulk damage

R. Radu, et al., N	R. Radu, et al., Nuclear Instruments & Methods in Physics Research A (2013)						
Defects	$\sigma_n [cm^2]$	$\sigma_p [cm^2]$	E _A [eV]	Assignment/References	Impact on the diodes electrical characteristics at		
					room temperature		
E(30K)	2.3 x 10 ⁻¹⁴		E _C - 0.1	Electron trap with a donor level in the upper half of the	On the N _{eff} by introducing		
				Si bandgap /[11]	positive space charge		
H(40K)		1.7 x 10 ⁻¹⁵	$E_{V} + 0.09$	Hole trap/[11]			
VO _i -/0	1.44 x 10 ⁻¹⁴		Е _С - 0.176	VO _i ^{-/0} / [40]			
$C_i C_s^{-/0}$	1.4 x 10 ⁻¹⁴		E _C - 0.171	C _i C _s ^{A-/0} / [41, 42]			
$I_p^{+/0}$	1.7 x 10 ⁻¹⁵		$E_{V} + 0.23$	Donor level of V_2O or of a still unkown C related			
				defect/[11,30]			
I _p ^{0/-}	1.7 x 10 ⁻¹⁵	9 x 10 ⁻¹⁴	Е _С - 0.55	Acceptor level of V_2O or of a still unkown C related	On the N _{eff} by introducing		
				defect/[11,30]	negative space charge and on		
					LC		
$C_i^{+/0}$	1.11 x 10 ⁻¹⁵	4.28 x 10 ⁻¹⁵	$E_{V} + 0.284$	C _i ^{+/0} / [21]			
V2 ^{-/0}	2.1 x 10 ⁻¹⁵		E _C - 0.424	V ₂ -′0 /[21]			
E ₄	1 x 10 ⁻¹⁵		Е _С - 0.38	V ₃ =/- / [38]	On LC		
E ₅	7.8 x 10 ⁻¹⁵		Е _С - 0.46	V ₃ -/0 /[38]	On LC		
H(116K)		4 x 10 ⁻¹⁴	$E_{V} + 0.33$	Hole trap with an acceptor level in the lower part of the	On the N _{eff} by introducing		
				Si bandgap - Extended defect (cluster of vacancies	negative space charge		
				and/or interstitials) /[10,11]			
H(140K)		2.5 x 10 ⁻¹⁵	$E_{V} + 0.36$	Hole trap with an acceptor level in the lower part of the	On the N _{eff} by introducing		
				Si bandgap - Extended defects (clusters of vacancies	negative space charge		
				and/or interstitials)/[10,11]			
H(152K)		2.3 x 10 ⁻¹⁴	$E_{V} + 0.42$	Hole trap with an acceptor level in the lower part of the	On the N _{eff} by introducing		
				Si bandgap - Extended defects (clusters of vacancies	negative space charge		
				and/or interstitials)/[10,11]			
H(87K)		0.3 x 10 ⁻¹⁵	$E_{V} + 0.193$	V ₃ ^{0/+} /[37]			
H(98K)		1.2 x 10 ⁻¹⁵	$E_{V} + 0.234$	$V_2O^{0/} + V_3O^{0/+} / [37]$			

LC = Leakage current

9

"Classical" NIEL – Non Ionizing Energy Loss is a quantity that describes the rate of energy loss due to atomic displacements as a particle traverses a material

- Final concentration of defects depends only on NIEL (total energy that goes into displacements) and not on the type of initial energy of the particle
- Number of displacement is proportional to PKA energy \rightarrow nature of damage independent of PKA energy

"effective" NIEL - based on molecular dynamics (MD) simulation recombination of displacements in disordered regions is taken into account

NIEL predicts the "lifetime" of silicon detectors

- α for electrons compared with "effective" and "classical" NIEL
- "effective" NIEL describes the energy dependence of α much better

<u>Energy dependance of defects, E_e = 1.5 to 15 Mev</u>

Increasing electron energy \rightarrow increase of local density of vacancies and interstitials \rightarrow cluster defects

22nd RD50 Workshop, University of New Mexico, Albuquerque, USA, 3-5 June 2013

13

Introduction rates for H defects for DOFZ & STFZ are similar → no [O] dependent
Introduction rate for E (30K) is 3 times larger in DOFZ material → [O] dependent

- Chemical structure of these defects unknown \rightarrow <u>next step: isochronal annealing</u> to get an overview of defect kinetics

Introduction rates for E(30K) and H defects versus "effective" NIEL follows a power law function

22nd RD50 Workshop, University of New Mexico, Albuquerque, USA, 3-5 June 2013

15

What is the origin of H defects?

- After irradiation small concentration, than start to increase
- <u>- Puzzle:</u> If the introduction rates for H defects is not [O] dependent why the annealing in/out temperature is different for the two materials?
- <u>- Is there a relation between H defects and higher order vacancies V_n (n>3)?</u>

22nd RD50 Workshop, University of New Mexico, Albuquerque, USA, 3-5 June 2013

What is the origin of E(30) defect?

- The E (30K) defect, a shallow donor, increases the positive space charge

- The E(30K) maximum concentration ~240°C and anneals out at 300°C

<u>Next step: isothermal annealing at high temperature to identify its</u> <u>formation kinetics</u>

<u>Material dependence – new defects</u>

 V_2 and V_3 become mobile at T > 200°C, they are trapped by oxygen Two donor levels have been detected in TSC only after injection of holes 1) Hole trap (87K): $V_2^{+/0}$ - stable up to 220 °C $V_3^{+/0}$ - changed to the ffc. – configuration 2) Hole trap (98K): overlap of $V_2O + V_3O$ donor levels → consistent with *V.P.Markevich et al: Phys.Status Solidi A 208,No3, 568-571,2011* Next step: isothermal annealing at high temperature to identify their formation kinetics

Energy dependence of current related damage parameter α :

– α proportional "Effective" NIEL; "Classical" NIEL scaling violated

Energy dependence of cluster-related defects E(30K) and H-defects :

- Increasing electron energy \rightarrow introduction rates increase (linear with E_e , power law with "effective" NIEL)
- Rates for H-defects \rightarrow no [O] dependence
- Rate for E (30K) \rightarrow [O] dependence

Isochronal annealing ($80^{\circ}C \rightarrow 300^{\circ}C$)

- Concentration of the H defects increase with T_{an} up to ~ 180°C for DOFZ and ~ 240°C for STFZ materials followed by a decrease at higher T_{an}
- Annealing of E(30K) shows a maximum at $\sim 240^{\circ}$ C for DOFZ

Next steps:

- Isothermal annealing at high temperatures (already started)
- Aim: get more information of defect kinetics of H-defects and E(30K) (activation energies for the formation and decay, frequency factors) for comparison with results from other methods like EPR \rightarrow identify defect structures

Thank you for your attention!

[10] I. Pintilie, E. Fretwurst, and G. Lindstroem, Appl. Phys. Lett. 92 (2008) 024101.
[11] I. Pintilie, et al., Nucl. Instr. and Meth. in Phys. Res. A 611 (2009) 52-68.
[21] M. Moll, PhD Thesis, University of Hamburg, DESY-THESIS-1999-040, December 1999.

[30] I. Pintilie, et al., Appl. Phys. Lett. 81 (2002) 165.

[37] V.P. Markevich, et al., Phys. Status Solidi A 208 (2011) 568-571.

[38] R.M. Fleming, et al., J. Appl. Phys. 111 (2012) 023715.

[40] G.D. Watkins, Materials Science in Semiconductor Processing 3 (2000) 227-235.

[41] L.W. Song, et al., Phys. Rev. Lett. 60 (1988) 460-463.

[42] L.W. Song, et al. Phys. Rev. B42 (1990) 5765.