

Studies on n-type silicon after electron irradiation

Roxana Radu a),b), Eckhart Fretwurst a), Robert Klanner a), Gunnar Lindströma) , Ioana Pintilie b)

a) Institute for Experimental Physics, University of Hamburg, Germany b) National Institute of Material Physics, Magurele, Bucharest, Romania

Outline

◆ Motivation

Radiation-induced bulk damage

◆ Results on electron irradiation from 1.5 to 15 MeV

2

◆ Conclusions

- **I. Joint project between NIMP Bucharest and University of Hamburg –'' Electron irradiation of Si-diodes at E = 1 - 15 MeV'** presented by Prof. G. Lindström at the last *WODEAN Workshop in Bucharest, 13/14 May 2010*
- *II.* **''Comprehensive investigation on bulk radiation damage in defect engineered silicon - from point defects to clusters'' –** Project Director Ioana Pintilie, 2011

Aim: *Identification of both the structure of the electrically active defects responsible for the electrical properties of irradiated silicon diodes and the possible reactions with different impurities in the material.*

1) Irradiation with 1.5, 3.5, 6 and 15 MeV electrons – studies performed in Hamburg

- Electrical characterization (CV/IV) before/after irradiation - V_{dep} and I_{dep} space charge distribution, recombination-generation current also after annealing (isothermal and isochronal)

- Analysis of electrically active defects by means of DLTS and TSC methods before/after irradiation - correlation with results from diode characteristics

2) Electron induced damage in Si implanted with ¹⁷O and ¹³C – investigations performed in Bucharest

- Studies for defect identification by Electron Paramagnetic Resonance (EPR, ENDOR) methods - in defect engineered silicon (O enriched, O lean, C rich, C lean)
- Microstructural investigation of the extended and clustered defects by High Resolution-Transmission Electron Microscopy (HRTEM) - Identify the structure of the radiation-induced electrically active defects and establish the role of the impurities in their generation and kinetics.

Irradiation with electrons, from low (E^e =1,5 MeV) to higher energies (E^e =15 MeV), in order to study the difference between radiation-induced point and cluster defects

Motivation

$$
T_{max} = \frac{2T_e(T_e + 2m_ec^2)}{M_0c^2A} \frac{T_{max} = \text{maximal energy transfer}}{T_e = E_{e,kin}} = \text{electron kinetic energy}
$$
\n
$$
E_{e,kin} = 1 \text{ MeV}, \ T_{max} = 154 \text{ eV}
$$
\n
$$
E_{e,kin} = 3.5 \text{ MeV}, \ T_{max} = 1.2 \text{ keV}
$$
\n
$$
E_{e,kin} = 6 \text{ MeV}, \ T_{max} = 3.2 \text{ keV}
$$
\n
$$
E_{e,kin} = 15 \text{ MeV}, \ T_{max} = 3.2 \text{ keV}
$$
\n
$$
E_{e,kin} = 15 \text{ MeV}, \ T_{max} = 18.3 \text{ keV}
$$
\n
$$
E_{e,kin} = 30 \text{ MeV}, \ T_{max} = 71 \text{ keV}
$$

New way to study the change from purely point to cluster-dominated effects

22nd RD50 Workshop, University of New Mexico, Albuquerque, USA, 3-5 June 2013

Target Depth (Å)

Materials and irradiation

Electron fluences: $1x10^{12} \rightarrow 1.5x10^{15} \text{ cm}^{-2}, E_e = 1.5 - 15 \text{ MeV}$ (for $E_e = 15MeV$: $\Phi_{eq} = 2.7x10^{10} \rightarrow 4.1x10^{13}$)

- Levels shown introduced by irradiation or by initial impurities - Energy levels in the band gap with impact on electrical sensor properties

Radiation-induced bulk damage 9

LC = Leakage current

"Classical" NIEL – Non Ionizing Energy Loss is a quantity that describes the rate of energy loss due to atomic displacements as a particle traverses a material

- Final concentration of defects depends only on NIEL (total energy that goes into displacements) and not on the type of initial energy of the particle
- Number of displacement is proportional to PKA energy \rightarrow nature of damage independent of PKA energy

"effective" NIEL - based on molecular dynamics (MD) simulation recombination of displacements in disordered regions is taken into account

NIEL predicts the "lifetime" of silicon detectors

- **α for electrons compared with "effective" and "classical" NIEL - "effective" NIEL describes the energy dependence of α much better**

22nd RD50 Workshop, University of New Mexico, Albuquerque, USA, 3-5 June 2013

<u>Energy dependance of defects, E_e **= 1.5 to 15 Mev</u>**

Increasing electron energy → increase of local density of vacancies and interstitials → cluster defects

22nd RD50 Workshop, University of New Mexico, Albuquerque, USA, 3-5 June 2013

- Introduction rates for H defects for DOFZ & STFZ are similar → **no** [O] dependent - Introduction rate for E (30K) is **3 times** larger in DOFZ material \rightarrow [O] dependent - Chemical structure of these defects unknown → **next step: isochronal annealing to get an overview of defect kinetics**

22nd RD50 Workshop, University of New Mexico, Albuquerque, USA, 3-5 June 2013

Introduction rates for E(30K) and H defects versus "effective" NIEL follows a power law function

22nd RD50 Workshop, University of New Mexico, Albuquerque, USA, 3-5 June 2013

What is the origin of H defects?

- **-** After irradiation small concentration, than start to increase
- **- Puzzle:** If the introduction rates for H defects is not [O] dependent why the annealing in/out temperature is different for the two materials?
- <u>- Is there a relation between H defects and higher order vacancies V_n(n>3)?</u>

22nd RD50 Workshop, University of New Mexico, Albuquerque, USA, 3-5 June 2013

What is the origin of E(30) defect?

- The E (30K) defect, a shallow donor, increases the positive space charge

- The E(30K) maximum concentration \sim 240^oC and anneals out at 300^oC

Next step: isothermal annealing at high temperature to identify its formation kinetics

Material dependence – new defects

 V_2 and V_3 become mobile at T > 200^oC, they are trapped by oxygen Two donor levels have been detected in TSC only after injection of holes 1) Hole trap (87K): $\rm\,V_{2}$ ^{+/o} - stable up to 220 ^oC $V_3^{+/o}$ - changed to the ffc. – configuration 2) Hole trap (98K): overlap of $V_2O + V_3O$ donor levels → consistent with *V.P.Markevich et al: Phys.Status Solidi A 208,No3, 568-571,2011* **Next step: isothermal annealing at high temperature to identify their formation kinetics**

Energy dependence of current related damage parameter α:

α proportional "Effective" NIEL; "Classical" NIEL scaling violated

Energy dependence of cluster-related defects E(30K) and H-defects :

- Increasing electron energy \rightarrow introduction rates increase (linear with E_e , power law with "effective" NIEL)
- Rates for H-defects \rightarrow no [O] dependence
- Rate for E (30K) \rightarrow [O] dependence

Isochronal annealing (80⁰C → 300⁰C)

- Concentration of the H defects increase with T_{an} up to \sim 180^oC for DOFZ and ~ 240°C for STFZ materials followed by a decrease at higher T_{an}
- Annealing of $E(30K)$ shows a maximum at \sim 240^oC for DOFZ

Next steps:

- Isothermal annealing at high temperatures (already started)
- Aim: get more information of defect kinetics of H-defects and E(30K) (activation energies for the formation and decay, frequency factors) – for comparison with results from other methods like $EPR \rightarrow$ identify defect structures

Thank you for your attention!

[10] I. Pintilie, E. Fretwurst, and G. Lindstroem, Appl. Phys. Lett. 92 (2008) 024101. [11] I. Pintilie, et al., Nucl. Instr. and Meth. in Phys. Res. A 611 (2009) 52-68. [21] M. Moll, PhD Thesis, University of Hamburg, DESY-THESIS-1999-040, December 1999.

[30] I. Pintilie, et al., Appl. Phys. Lett. 81 (2002) 165.

[37] V.P. Markevich, et al., Phys. Status Solidi A 208 (2011) 568-571.

[38] R.M. Fleming, et al., J. Appl. Phys. 111 (2012) 023715.

[40] G.D. Watkins, Materials Science in Semiconductor Processing 3 (2000) 227-235.

[41] L.W. Song, et al., Phys. Rev. Lett. 60 (1988) 460-463.

[42] L.W. Song, et al. Phys. Rev. B42 (1990) 5765.

 2_c