

Bundesministerium für Bildung und Forschung

Irradiation study of different silicon materials for the CMS tracker upgrade

20th RD50 Workshop 3-5 June 2013, Albuquerque

> **Joachim Erfle** University of Hamburg

On behalf of the CMS Tracker Collaboration

Irradiation study of different silicon materials for the CMS tracker upgrade

Joachim Erfle joachim.erfle@desy.de

page 1 05/06/2013

Overview

• Introduction to the CMS HPK silicon sensor campaign

Results for irradiated pad sensors

- Dark current
- Effective doping concentration
- Signal collection
- Conclusions

Irradiation study of different silicon materials for the CMS tracker upgrade

Joachim Erfle joachim.erfle@desy.de page 2 05/06/2013

Improve tracker for the HL-LHC:

- Cope with higher occupancy
- Add level 1 trigger capability
- Withstand higher radiation (Outer tracker: up to a fluence of $\Phi_{neq} = 1.5 \ 10^{15} \ cm^{-2}$

Inner tracker: up to a fluence of $\Phi_{neg} = 1.4 \ 10^{16} \ cm^{-2}$)

This presentation:

→ Find **best suited silicon material** for a future outer tracking detector

- No excess in dark current
- High signal to noise ratio
- Low full depletion voltage

Improve tracker for the HL-LHC:

- Cope with higher occupancy
- Add level 1 trigger capability
- Withstand higher radiation (Outer tracker: up to a fluence of $\Phi_{neq} = 1.5 \ 10^{15} \ cm^{-2}$

Inner tracker: up to a fluence of $\Phi_{neq} = 1.4 \ 10^{16} \ cm^{-2}$)

This presentation:

→ Find **best suited silicon material** for a future outer tracking detector

To achieve that we investigate a large variety of silicon materials:

- Different bulk doping (n and p)
- Different thinning processes
- Different oxygen content
- Different thicknesses

Irradiations with protons and/or neutrons to simulate HL-LHC radiation dose

Irradiation study of different silicon materials for the CMS tracker upgrade

Material	Thinning method	Active thickness [μm]	Wafer thickness [µm]	Oxygen concentration [10 ¹⁷ cm ⁻³]
dd-FZ	deep diffusion	200, 300	320	3, 1
FZ		200	200	expected small
MCz		200	200	4

Of each material there are 2 different types:

Expected damage at different tracker positions

Energy of charged hadrons peaks between 100 MeV and 1 GeV

Irradiation study of different silicon materials for the CMS tracker upgrade

Joachim Erfle joachim.erfle@desy.de page 6 05/06/2013

Expected damage at different tracker positions

Radius	Protons Φ _{eq} [cm ⁻²]	Neutrons Φ _{eq} [cm ⁻²]	Total Φ _{eq} [cm ⁻²]	
40 cm	$3 \cdot 10^{14}$	$4 \cdot 10^{14}$	7 · 10 ¹⁴	
20 cm	$1 \cdot 10^{15}$	$5 \cdot 10^{14}$	$1.5 \cdot 10^{15}$	
15 cm	$1.5 \cdot 10^{15}$	$6 \cdot 10^{14}$	$2.1 \cdot 10^{15}$	
			HL-LHC: L _{int} =3	000 fb ⁻¹
Neutrons	s: 1 MeV (TRIGA	reactor Ljubljana)	10 ¹⁷ 3000fb ⁻¹	 Z=0cm (barrel): Charged hadrons Neutral hadrons
Protons:	23 MeV (Karls	ruhe cyclotron) 🛛 🔬	☐ 10 ¹⁶	Total Z=250cm (end-cap):
	23 GeV (CERN	PS)	1015	Charged hadrons Neutral hadrons Total
	crosscheck:			
	800 MeV (Los	Alamos)	2 10 ¹⁴ Strip tra	
			10 ¹³ 0 10 20 30 40 50	60 70 80 90 100 110
			Radiu	JS (CM) courtesy of M. Guthoff, KIT

Energy of charged hadrons peaks between 100 MeV and 1 GeV

Irradiation study of different silicon materials for the CMS tracker upgrade Joachim.erfle@desy.de

page 7 05/06/2013

Measurements and methods

$$N_{C} = N_{C0} (1 - \exp(-c\Phi_{neq})) + \beta \Phi_{neq}$$

Irradiation study of different silicon materials for the CMS tracker upgrade

Joachim Erfle joachim.erfle@desy.de page 8 05/06/2013

Volume current versus fluence

$$\mathbf{I} = \alpha \Phi_{neq} \cdot V + I_0 \cdot V$$

Volume current scales with NIEL, independent of silicon material

currents are measured after annealing of 80 min@ 60°C at -20°C and scaled to 20°C, guard ring grounded

Irradiation study of different silicon materials for the CMS tracker upgrade

Joachim Erfle joachim.erfle@desy.de

page 9 05/06/2013

N_{eff} after 23 GeV proton irradiation

Introduction rate similar for both FZ n- and p-type and also for both MCz n- and p-type, but smaller for FZ than for MCz

Irradiation study of different silicon materials for the CMS tracker upgrade

Joachim Erfle joachim.erfle@desy.de page 10 05/06/2013

Annealing of N_{eff} after 23 GeV irradiation

N_{eff} after 23 MeV proton irradiation

N_{eff} after 23 MeV proton irradiation

Irradiation study of different silicon materials for the CMS tracker upgrade

Joachim Erfle joachim.erfle@desy.de page 13 05/06/2013

N_{eff} after 23 MeV proton irradiation compared to 23 GeV proton irradiation

Type-inverted p-type sensors after 23 GeV irradiation show same slope

Irradiation study of different silicon materials for the CMS tracker upgrade

Irradiated with 23 MeV protons, 1MeV neutrons, 23 MeV protons + 1 MeV neutrons

In a pad sensor charge collection depends on material only via

- Full depletion voltage
- Sensor thickness

(trapping independent of material)

Irradiation study of different silicon materials for the CMS tracker upgrade _____

Charge collection

Irradiated with 23 MeV protons, 1MeV neutrons, 23 MeV protons + 1 MeV neutrons

In a pad sensor charge collection depends on material only via

- Full depletion voltage
- Sensor thickness

(trapping independent of material)

Irradiation study of different silicon materials for the CMS tracker upgrade

- Dark current independent on silicon material
- CCE depends on silicon material via depletion voltage
- Full depletion voltage depends strongly on material and irradiation type. (can be explained by a microscopic model)

23 MeV protons and neutrons

Type inversion	FZ	MCZ	Type inversion	FZ	
N-type	~	~	N-type	~	
P-type	-	-	P-type	-	

- Type inverted materials tend towards lower depletion voltages
- Rise of full depletion with fluence similar for 23 MeV and GeV proton irradiation (MCz)

Irradiation study of different silicon materials for the CMS tracker upgrade

"No cut" (with fixed 5 strip clusters) analysis nearest to pad sensor, but unfortunately it is not applicable in the tracker.

Sensor have to withstand fluences up to $\Phi_{neq} = 1.4 \ 10^{16} \ cm^{-2}$ The usability of planar silicon sensors will be explored:

material	thinning method	active thickness [µm]	wafer thickness [µm]	oxygen concentration [10 ¹⁷ cm ⁻³]
FZ	deep diffusion	120	320	5
FZ	handling wafer	120	320	
Epi		50,100	320	1,1

radius	protons $\Phi_{ m eq}$ [cm ⁻²]	neutrons Φ _{eq} [cm ⁻²]	total Φ _{eq} [cm ⁻²]
10 cm	$3 \cdot 10^{15}$	$7\cdot 10^{14}$	$3.7 \cdot 10^{15}$
5 cm	1.3 · 10 ¹⁶	$1\cdot 10^{15}$	$1.4 \cdot 10^{16}$

Irradiation study of different silicon materials for the CMS tracker upgrade

Joachim Erfle joachim.erfle@desy.de page 19 05/06/2013

Joachim Erfle joachim.erfle@desy.de page 20 05/06/2013

clear dependence of Neff on irradiation type

acceptor removal (short term annealing)

Wafer overview

6" Wafer		
	structure	to study
	diodes	material
	baby strip sensor	reference design / material
	baby with integrated pitch adapter	study new design ideas
	pixel sensor	reference Design / material
	multigeometry pixel	layout parameters
	multigeometry strips	layout parameters
	baby strixel	study new design ideas
	teststructures	process parameters

Irradiation study of different silicon materials for the CMS tracker upgrade

Joachim Erfle joachim.erfle@desy.de page 22 05/06/2013

material	bulk resistivity	oxide concentration
FZ320P	3-8	3,50E+016
FZ200P	3-8	3,00E+017
FZ120P	3-8	5,00E+017
FZ320N	1.2-2.4	1,80E+016
FZ200P	1.2-2.4	3,00E+017
FZ120P	1.2-2.4	5,00E+017
MCZ200P	>2	3,75E+017
MCZ200N	>0.5	3,00E+017

page 23 05/06/2013