

Simulations of edge-TCT, interstrip resistance and 2-defect model CCE

22nd RD50 Workshop June 3rd - 5th 2013

T. Peltola¹⁾, J. Härkönen¹⁾

¹⁾Helsinki Institute of Physics, CMS Tracker Project.

Outline

Edge-TCT simulations of nonirradiated Si detector with Synopsys TCAD

- Q(z), t_c(z), v_{drift}(z), E(z)
- Comparison with measured edge-TCT
- □ Interstrip resistance simulations of a device using p-stop isolation
 - Dependence on pitch, p-stop width, spacing and doping
 - Synopsys vs Silvaco
- □ Charge collection efficiency simulations
 - 2-level defect model for protons and neutrons
 - Comparison with SiBT measured CCE of 320P and 200P

Edge-TCT simulations

edge-TCT: method

Goal: extract electric field E from drift velocity V_{drift} using eTCT

 $\hfill\square$ eTCT provides measurement of collection time t_c that is proportional to the v_{drift}

 \Box v_{drift} is related to the E \rightarrow possible to determine E out of drift velocity?

□ Collected eTCT generated transient signals and charges as a function of injection distance:

edge-TCT: nonirradiated MSSDs

0.025

Backplane zoom 30V 90V from the Simulated structure and parameters correspond to the 0.020 200 simulation: measured HPK detector (320N, V_{fd} ~ 210 V, region 7-80) 50V 70V 10V0.015 Charge [a.u.] 110V \Box Simulated max. value of Q(z) for the region 7 reached 300V 160V already at ~50V 400V \Box Simulated backplane bump ratio to max. value of Q(z) ⊳— 5V ~two orders of magnitude lower than measured 0.005 0.000 200 250 300 350 z [μm] FZ320N region 7 eTCT-measurement (M. Fernandez 2013). V_{fd} ~ 210 V Simulated edge-TCT for 320N region 7 Eff(z)= 1(z,t) dt [a.u.] 8.0 -7.5 - 30V 2007.0 - 90V 180 6.5 - 200V 6.0 50V 5.5 160 -- 70V 100 5.0 10 \ •••• 10V 110 2.5 Charge [a.u.] 30 \ 4.5 110V 40 \ 140 4.0 - 300V 2 120 70 \ 3.5 +•• 160V 80 \ □···· 400V 3.0 100 V 1.5 110 \ -⊳-5V 60 2.5 - 120 V 140 V - 160 V 2.0 180 V 253K 200 \ 1.5 220 V 240 \ 1.0 50 280 V 253K 0.5 280 V 0.5 300 V 320 V 0.0 01 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 380 V 0 50 100 150 200 250 300 350 - 400 V z [mm] z [μm]

□ VTT detector 14/10: strip w=14 μ m, implant w=10 μ m □ HPK 7-80: strip w=31 μ m, implant w=18 μ m

□ Simulation with VTT parameters is closer to the measured behaviour, but still not matching at V < V_{fd} □ Because of smaller strip width both amplitude of Q(z) and depletion region increase slower with voltage compared to HPK region 7

edge-TCT: strip widths 31 and 14 μ m

 \square Larger strip width results in deeper extension of electric field for each voltage \rightarrow higher and wider Q(z), lower V_{fd}

 \Box Compared to measurement, simulation produces too large increase of E(z) depth for each voltage \rightarrow larger structure in lateral direction needed?

edge-TCT: VTT detector collection time

V > V_{fd}
 Signal collection time t_c: time that takes to collect 0.98*Q_{max}
 Measurement: t_c was set to zero when thickness < laser z-position < 0

□ Simulated t_c values/evolution very close to measurement at $0 \le z \le 320$ □ Enables further comparison of parameters calculated from fits

 \Box Simulation matches the calculated value at z = 50 µm, but has a steeper slope

50

100

150

z [um]

300

50

100

150

z ſum

1.5

0.5

x=75un

x=80um

edge-TCT: VTT detector v_{drift}(z,x)

Interstrip resistance simulations

MSSD interstrip resistance simulations

□ 3 strip structure, $V_{strip1} = V_{strip3} = 0$, $V_{strip2} \sim 3$ V and 0 V □ V = -HV at the backplane

□ Interstip resistance (R_{int}) is defined as (Induced Current Method):

R_{int} is plotted as a function of applied voltage V

- Device parameters:
- 320P
- Bulk doping = $3.4e12 \text{ cm}^{-3}$
- p-stop depth = 1.6 μ m
- p-stop width = 6 μ m
- p-stop spacing = 6 μm
- implant depth = 2.2 µm
- $R_{bias} = 1 M\Omega$

MSSD interstrip resistance: pitch

Oxide charges Q_f of the Si/SiO₂ interface are varied
 Isolation fails for practical voltages at Q_f > 7e11 cm⁻²
 7-80: Smaller fluctuations, R_{int} otherwise pitch independent
 Minimum R_{int} determined by R_{bias} values of the two strips

 Electron densities between implants and p-stops: isolated and short-circuited cases

MSSD interstrip resistance: p-stop spacing, width & doping

Timo Peltola, 22nd RD50 Workshop, 3-5 June 2013

Voltage [V]

MSSD interstrip resistance : Synopsys vs Silvaco

□ Identical structures & simulation parameters ($R_{bias} = 1 \Omega$)

□ Matching qualitative behaviour between packages

□ Slight difference in intermediate values of Q_f and voltages needed for isolation

- \circ Synopsys: Q_f = 7e11 cm⁻² transition at V ~ 400 V
- \circ Silvaco: Q_f = 6e11 cm⁻² transition at V ~ 500 V

CCE simulations

EVL defect model tuned to T = 253 K by Robert Eber, KIT

Proton model

Type of defect	Level	$\sigma_{\rm e}$	$\sigma_{ m h}$	Concentration	Type of defect	Level	$\sigma_{\rm e}$	$\sigma_{ m h}$	Concentration
	[eV]	[cm ²]	[cm ²]	[cm ⁻³]		[eV]	[cm ²]	[cm ²]	[cm ⁻³]
Deep acceptor	<i>E_C</i> - 0.525	1e-14	1e-14	1.189* <i>F</i> + 6.454e13	Deep acceptor	<i>E_C</i> - 0.525	1.2e-14	1.2e-14	1.55* <i>F</i>
Deep donor	E_{V} + 0.48	1e-14	1e-14	5.598*F - 3.959e14	Deep donor	E_{v} + 0.48	1.2e-14	1.2e-14	1.395* <i>F</i>

Both models produce correct leakage current & DP behaviour:

SiBT data fluencies

Device	Φ (1 MeV n _{eqv} p) [cm ⁻²]	Φ (1 MeV n) [cm ⁻²]	ΣΦ (1 MeV n _{eqv}) [cm ⁻²]
FZ320P	0.0	4.0e14	4.0e14
FZ320P	8.0e14	5.0e14	1.3e15
FZ200P	3.0e14	0.0	3.0e14
MCz200P	9.0e14	5.0e14	1.4e15

□ Since irradiations included both protons and neutrons, both defect models are needed

□ Thicknesses of the reference detectors and DUTs are not equal, so measured CCE is determined by:

$$CCE_{data} = \frac{Q_{DUT}}{Q_{ref}} \frac{d_{ref}}{d_{DUT}}$$

Q = collected signald = detector thickness

40000 30000 [w) 20000 10000

300N @ T=253K, V=300V

1e13 1e14

Timo Peltola, 22nd RD50 Workshop, 3-5 June 2013

Neutron model

PHYSICS

CCE simulations: SiBT data vs simulation

□ 5-120 region, T = 273 K , V ≈ 600 V

 \Box Tuning to match $I_{\text{leak}} @ T = 273 \text{ K}$ for both models: $\sigma_{\text{e,h}}(273\text{ K}) = 0.75^* \sigma_{\text{e,h}}(253\text{ K})$

- □ Proton model matches the SiBT data for 200P, no match for 320P
- Neutron model is within 0.8% of the neutron irradiated measurement
- □ Problems: proton model for 320P and mixed doses

Summary

□ Simulated edge-TCT can succesfully model measurement. Next steps:

- Structure tuning needed at V < V_{fd}
- Investigation of simulated mobility

□ Induced Current Method was applied to simulate interstrip resistance

- Strong dependence on p-stop width was observed for R_{int}
- Synopsys and Silvaco produce results that match qualitatively

□ 2-level defect models for both protons and neutrons were applied for the CCE simulations

- Simulated CCE(200P) matches the experimental SiBT results
- Simulated CCE(320P) models the neutron irradiated SiBT measurement

• Further defect model required for mixed doses?