A. Montalbano¹ D. Bassignana² W. Chen³ Z. Li³ S. Liu^{3,4} D. Lynn³ G. Pellegrini² D. Tsybychev¹

¹Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA

²National Microelectronics Centre, Barcelona, Spain

³Physics Department, Brookhaven National Laboratory, Upton, NY, USA

⁴School of Nuclear Science and Technology, Xi'an Jiaotong University, China

4 June, 2013

2 / 23

 2990

メロトメ 御 メメ きょくきょうき

Table of Contents

- \blacktriangleright Introduction
- \blacktriangleright High Energy
	- \blacktriangleright Compare Geometries
	- \blacktriangleright Compare to Conventional
- \blacktriangleright Photon Science
- \blacktriangleright Prototypes
- \triangleright Conclusion

Introduction Past Silicon Pixel Detectors

Fig 1a. Typical planar pixel detector.

Fig 1b. Standard 3-D detector.

- \triangleright Planar pixels (left) have limited depletion zone close to the electrodes at moderately high voltages after high radiation exposure
- \triangleright The Conventional 3D detector (right) solved this problem, but introduced a saddle point in the potential and nonhomogeneityi[n](#page-7-0) \vec{E} \vec{E} \vec{E} , meaning it intro[duc](#page-1-0)[ed](#page-3-0) [a](#page-2-0) θ [d](#page-2-0)e[p](#page-6-0)enden[ce](#page-0-0)[.](#page-33-0)

3D

Advantages of 3D

- \blacktriangleright Decouples depletion from thickness
- \blacktriangleright Reduces depletion voltage by decreasing the electrode spacing

Conventional 3D Limitations

- \blacktriangleright High electric field along junction at the column
- \blacktriangleright Columns create inhomogeneities in E*~*

We want to:

- \blacktriangleright Fix the saddle point in the potential.
- **Figure** Remove θ dependence
- \blacktriangleright Make each cell independent of its neighbors

 Ω 4 / 23

Our High Energy 3D-Trench Electrode Detector

- Electrode spacing: 50 *µ*m
- \blacktriangleright Shape: Hexagon
- \blacktriangleright Depth: 500 μ m -Simulated: 300 *µ*m
- \blacktriangleright Width of doping: 10 μ m
- \triangleright Depth of doping: Simulated - 270/300 *µ*m
- \blacktriangleright When simulated with radiation, treated after $\Phi_{eq} =$ 10^{16} 1 MeV n_{eq}/cm²
- \triangleright Doping:
	- \blacktriangleright p+ column
	- \blacktriangleright n+ trench
	- \blacktriangleright p type bulk (simulates [a](#page-3-0)f[ter](#page-5-0)[SC](#page-4-0)[S](#page-5-0)[I\)](#page-1-0)
KORKOR KERKER E
- Ω 5 / 23

Simulation Specifics

- \triangleright Used commercial software from Silvaco (TCAD's programs -Devedit 3d, Device 3d, Atlas, etc) to simulate the detectors' electrical properties.
- \triangleright Radiation defects are not built into the program
- \triangleright Simulate the detector after high radiation by changing the effective doping concentration of the bulk.

6 / 23

メロトメ 御 メメ きょくきょうき

 \blacktriangleright This gives us first order effects.

Full Depletion - 95V

Full Depletion Voltage was simulated to be 95 V. Electrode spacing is $50 \mu m$ Treated with $\Phi_{eq} = 10^{16}$ 1 MeV n_{ea}/cm²

The different types of detectors possible

The different doping does not matter in the conventional detectors, since differences would just correspond to a translation.

- For our detectors, the difference will cause different \vec{E}
- \blacktriangleright We choose:
	- \triangleright Doping of the center column
	- \triangleright Doping of the cylindrical-shaped trench in each cell
	- \triangleright Doping of bulk n (green) and p (red)
- 1. Outer trench is $n+$ and center column is $p+$
- 2. Outer trench is $p+$ and center column is $n+$

8 / 23

4 Combinations

- \triangleright Now for both of the previous two, there are two more versions with the type of doping of the bulk Si
	- 1. n-type
	- 2. p-type
- \triangleright Under high radiation, the bulk material may undergo space charge sign inversion (SCSI). This "type inversion" turns n-type doping into "p equivalent"
- **Fig. 7 This determines where the junction is, at the trench or at the column**
- I Junction at the column makes high electric field, while having the junction at the trench allows for more uniformity and a lower absolute maximum E*~*

10 / 23

Type Comparison Results

Therefore, we use $p+$ column with p-type bulk and $n+$ trench

12 / 23

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (º

[Geometry Comparisons](#page-12-0)

Variable Shapes

- \triangleright There are multiple shapes we can simulate the cylindrical trench as:
	- \triangleright Circle
	- \triangleright Octagon
	- \blacktriangleright Hexagon
	- \blacktriangleright Square
- \triangleright Only the hexagon and square lend themselves to multi-celled arrays because they can be tiled
- \triangleright The circle configuration can be useful in scientific studies.
- \triangleright We studied the corner effects by comparing these depletion voltages and electric field distributions

[Geometry Comparisons](#page-13-0)

Variable Sides $\Phi_{eq}=10^{16}$ 1 MeV n_{eq}/cm², electrode spacing (black line): 50 μ m

[Geometry Comparisons](#page-14-0)

Variable Sides Results

- \blacktriangleright The θ dependence decreases as we increase the number of sides
- \triangleright The depletion voltage increases with the number of sides because of the increase in volume of each cell

15 / 23

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (º

 $\mathrel{\rule{0pt}{1.1ex}\raisebox{0pt}{\text{}}}\mathrel{\rule{0pt}{1.1ex}\raisebox{0pt}{\text{}}}}$ [Hexagon Results](#page-15-0)

Conventional Vs. BNL's

Potential

[Hexagon Results](#page-16-0)

Electric Field's *θ* Dependence

Þ QQ 17 / 23

Photon Sciences

- \triangleright Also useful for X-ray detection at the National Synchrotron Light Source II at Brookhaven National Laboratory.
- \triangleright The natural separation of cells is good for spectrometry
- \triangleright Radiation is no longer an issue, simulated at a much lower bulk doping concentration.
- \triangleright The cell size is $\approx 500 \mu m$ which means it is much larger than the High Energy cells $(x10 \text{ larger})$
- \triangleright Chose n+ column with n-type bulk and p+ trench

Prototypes

Being manufactured by CNM (National Centre for Micro-electronics)

Array of High Energy pixels on left, and a single Photon Science pixel on right.

Measurements of Good Prototypes

メロトメ 御 トメ 差 トメ 差 トー 差 2990 20 / 23

Measurements of Less than Ideal Prototypes

メロメ メ御 メメ きょうぼ チェ G. 2990 21 / 23

Conclusions

For V_{den} , the shapes are all inscribed inside of a circle with electrode spacing of 50 μ m. For $\langle V_{dep} \rangle$, these shapes are averaged with the shapes which have the same sized circle inscribed inside of it.

Summary

- \triangleright Completed a systematic study comparing BNL's 3D-Trench Electrode Detectors with Conventional 3D detectors
- Simulated BNL's to have a depletion voltage of 95V, about $\frac{2}{5}$ of the conventional detectors.
- \triangleright One can also see that the electric field is more uniformly distributed in the hexagonal 3D-Trench Electrode Detectors than in the conventional 3D.
- \triangleright Some preliminary measurements from the first prototypes are done.
- \blacktriangleright The next step is to measure the charge collection efficiencies
- \triangleright CNM has started the next round of prototypes.

23 / 23

K ロ ▶ K 個 ▶ K ミ ▶ K ミ ▶ - ' 큰' - 9 Q Q

Thank you for your attention!

References

- 1. The ATLAS Collaboration,
- Atlas Insertable B-Layer Technical Design Report ATLAS TDR 19, 2010
- 2. C. Kenny, S. Parker, J. Segal, C. Storment
- Silicon detectors with 3-D electrode arrays: Fabrication and initial test results
- IEEE Transactions on Nuclear Science, NS46(4) 1999.
- 3. Z. Li.
- New BNL 3D-Trench electrode Si detectors for radiation hard detectors for sLHC and for X-ray applications.
- Nuclear Instruments and Menthods in Physics Research A, 2011. 4. Z. Li.
- Radiation damage effects in Si materials and detectors and rad-hard Si detectors for SLHC.
- Journal of Instrumentation, 4 P03011 2009. And a server of the server 23 / 23

E*~* For Different Geometries

E*~* For Different Geometries

Hexagon Simulation

イロメ イ団メ イモメ イモメー \equiv 299 23 / 23

Hole Concentration in Hexagon $\Phi_{eq}=10^{16}$ 1 MeV n_{eq}/cm², $V_{dep}=95$ V

 QQ 23 / 23

Conventional 3D

- \blacktriangleright Electrode spacing: 50 μ *m*
- \blacktriangleright Depth: 300 μ m
- \triangleright Shape: Conventional
- \triangleright Diameter of doping columns: 10 *µ*m
- \blacktriangleright When simulated with radiation, treated after 10^{16} *n*/*cm*²
- \triangleright Doping:
	- \blacktriangleright p+ center column
	- \blacktriangleright n+ corner columns
	- \blacktriangleright p type bulk (simulates [a](#page-28-0)f[ter](#page-30-0)[SC](#page-29-0)[S](#page-30-0)[I\)](#page-20-0) $\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n$
- 23 / 23

E*~* Conventional vs. BNL's

Conventional

Full Depletion Voltage was simulated to at 250 V. $\Phi_{eq}=10^{16}$ 1 MeV n $_{eq}/$ cm²,electrode spacing: 50 μ *m*

On the left, the maximum (red) is 40,000 V/cm while on the right the maximum is almost 1,300,000.

23 / 23

Type Comparison for Photon Science

At this size, we can only get full depletion before breakdown with $n+$ column and $p+$ trench. Left is $n+$ column fully depleted at 90 V, and right is $p+$ column at 500 V, not close to full depletion.

Electrons Versus Holes

- \triangleright There is a difference between collecting and reading out electrons versus holes because of their mobility
- But because of the high \vec{E} , we don't see the mobility difference over such a small distance
- \blacktriangleright This is because we are near the saturation
- \blacktriangleright There is only a 20% difference in this case, so it is not significant

23 / 23

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (◇

 \blacktriangleright The trapping is very minimal