# A Systematic 3D Simulation Study Comparing BNL's 3D-Trench Electrode Detectors with Conventional 3D Detectors

A. Montalbano<sup>1</sup> D. Bassignana<sup>2</sup> W. Chen<sup>3</sup> Z. Li<sup>3</sup> S. Liu<sup>3,4</sup> D. Lynn<sup>3</sup> G. Pellegrini<sup>2</sup> D. Tsybychev<sup>1</sup>

<sup>1</sup>Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY. USA

<sup>2</sup>National Microelectronics Centre, Barcelona, Spain

<sup>3</sup>Physics Department, Brookhaven National Laboratory, Upton, NY, USA

<sup>4</sup>School of Nuclear Science and Technology, Xi'an Jiaotong University, China

4 June, 2013

#### Table of Contents

- Introduction
- ► High Energy
  - Compare Geometries
  - Compare to Conventional
- Photon Science
- Prototypes
- Conclusion

#### Introduction

#### Past Silicon Pixel Detectors



Fig 1a. Typical planar pixel detector.

Fig 1b. Standard 3-D detector.

- ► Planar pixels (left) have limited depletion zone close to the electrodes at moderately high voltages after high radiation exposure
- ▶ The Conventional 3D detector (right) solved this problem, but introduced a saddle point in the potential and nonhomogeneity in  $\vec{E}$ , meaning it introduced a  $\theta$  dependence.

#### 3D

#### Advantages of 3D

- Decouples depletion from thickness
- Reduces depletion voltage by decreasing the electrode spacing

#### Conventional 3D Limitations

- High electric field along junction at the column
- ▶ Columns create inhomogeneities in E

#### We want to:

- Fix the saddle point in the potential.
- Remove  $\theta$  dependence
- Make each cell independent of its neighbors



## Our High Energy 3D-Trench Electrode Detector



- Electrode spacing: 50 μm
- ► Shape: Hexagon

- ▶ Depth:  $500 \mu m$  Simulated:  $300 \mu m$
- ▶ Width of doping: 10  $\mu m$
- Depth of doping:
   Simulated 270/300 μm
- When simulated with radiation, treated after  $\Phi_{eq} = 10^{16} \text{ 1 MeV } n_{eq}/\text{cm}^2$
- Doping:
  - p+ column
  - ► n+ trench
  - p type bulk (simulates after SCSI)

# Simulation Specifics

- Used commercial software from Silvaco (TCAD's programs -Devedit 3d, Device 3d, Atlas, etc) to simulate the detectors' electrical properties.
- Radiation defects are not built into the program
- Simulate the detector after high radiation by changing the effective doping concentration of the bulk.
- ▶ This gives us first order effects.

# Full Depletion - 95V

Full Depletion Voltage was simulated to be 95 V. Electrode spacing is  $50\mu m$  Treated with  $\Phi_{eq}=10^{16}$  1 MeV  $n_{eq}/cm^2$ 



## The different types of detectors possible

The different doping does not matter in the conventional detectors, since differences would just correspond to a translation.

- For our detectors, the difference will cause different  $\vec{E}$
- ▶ We choose:
  - Doping of the center column
  - Doping of the cylindrical-shaped trench in each cell
  - Doping of bulk n (green) and p (red)
- 1. Outer trench is n+ and center column is p+
- 2. Outer trench is p+ and center column is n+



#### 4 Combinations

- Now for both of the previous two, there are two more versions with the type of doping of the bulk Si
  - 1. n-type
  - 2. p-type
- Under high radiation, the bulk material may undergo space charge sign inversion (SCSI). This "type inversion" turns n-type doping into "p equivalent"
- ► This determines where the junction is, at the trench or at the column
- ▶ Junction at the column makes high electric field, while having the junction at the trench allows for more uniformity and a lower absolute maximum  $\vec{E}$



## Electric Fields, Fully Radiated

The electrode spacing is 50  $\mu m$ , and is simulated with  $\Phi_{ea} = 10^{16} \ 1 \ \text{MeV} \ n_{ea}/\text{cm}^2$ 



N column

# Type Comparison Results

Table: Comparison of Different Doping schemes

| column, bulk, trench | $V_{dep}$ | Junction | Dep Direction |
|----------------------|-----------|----------|---------------|
| n+, n, p+            | 90 V      | trench   | inward        |
| n+, p, p+            | > 500 V   | column   | outward       |
| p+, n, n+            | > 500 V   | column   | outward       |
| p+, p, n+            | 88 V      | trench   | inward        |

Therefore, we use p+ column with p-type bulk and n+ trench



# Variable Shapes

- There are multiple shapes we can simulate the cylindrical trench as:
  - Circle
  - Octagon
  - Hexagon
  - Square
- Only the hexagon and square lend themselves to multi-celled arrays because they can be tiled
- The circle configuration can be useful in scientific studies.
- We studied the corner effects by comparing these depletion voltages and electric field distributions

Geometry Comparisons

#### Variable Sides

 $\Phi_{eq}=10^{16}~1~{
m MeV}~{
m n}_{eq}/{
m cm}^2$ , electrode spacing (black line):  $50 \mu m$ 



Geometry Comparisons

#### Variable Sides Results

- ightharpoonup The heta dependence decreases as we increase the number of sides
- ► The depletion voltage increases with the number of sides because of the increase in volume of each cell

|           | Square | Hex  | Oct   | Circle |
|-----------|--------|------|-------|--------|
| $V_{dep}$ | 88 V   | 95 V | 107 V | 110 V  |

Hexagon Results

#### Conventional Vs. BNL's

#### Potential



Simulations

☐ Hexagon Results

# Electric Field's $\theta$ Dependence



#### **Photon Sciences**

- Also useful for X-ray detection at the National Synchrotron Light Source II at Brookhaven National Laboratory.
- The natural separation of cells is good for spectrometry
- Radiation is no longer an issue, simulated at a much lower bulk doping concentration.
- ▶ The cell size is  $\approx 500 \mu m$  which means it is much larger than the High Energy cells (x10 larger)
- ► Chose n+ column with n-type bulk and p+ trench



## Prototypes

Being manufactured by CNM (National Centre for Micro-electronics)



Array of High Energy pixels on left, and a single Photon Science pixel on right.

# Measurements of Good Prototypes



# Measurements of Less than Ideal Prototypes



#### Conclusions



For  $V_{dep}$ , the shapes are all inscribed inside of a circle with electrode spacing of  $50\mu m$ . For  $\langle V_{dep} \rangle$ , these shapes are averaged with the shapes which have the same sized circle inscribed inside of it.

| Var                      | Conv  | Square | Hex   | Oct   | Circle |
|--------------------------|-------|--------|-------|-------|--------|
| $V_{dep}$                | 250 V | 88 V   | 95 V  | 107 V | 110 V  |
| $\langle V_{dep}  angle$ | n/a   | 120 V  | 118 V | 124 V | 110 V  |
| Potential Irregularities | Yes   | No     | No    | No    | No     |

## Summary

- Completed a systematic study comparing BNL's 3D-Trench Electrode Detectors with Conventional 3D detectors
- ▶ Simulated BNL's to have a depletion voltage of 95V, about  $\frac{2}{5}$  of the conventional detectors.
- One can also see that the electric field is more uniformly distributed in the hexagonal 3D-Trench Electrode Detectors than in the conventional 3D.
- Some preliminary measurements from the first prototypes are done.
- ▶ The next step is to measure the charge collection efficiencies
- CNM has started the next round of prototypes.

A Systematic 3D Simulation Study Comparing BNL's 3D-Trench Electrode Detectors with Conventional 3D Detectors  $\sqcup$  Summary

Thank you for your attention!

#### References

- 1. The ATLAS Collaboration, Atlas Insertable B-Layer Technical Design Report
- ATLAS TDR 19, 2010
- 2. C. Kenny, S. Parker, J. Segal, C. Storment Silicon detectors with 3-D electrode arrays: Fabrication and initial test results

IEEE Transactions on Nuclear Science, NS46(4) 1999.

3. Z. Li.

New BNL 3D-Trench electrode Si detectors for radiation hard detectors for sLHC and for X-ray applications.

Nuclear Instruments and Menthods in Physics Research A, 2011.

4. Z. Li.

Radiation damage effects in Si materials and detectors and rad-hard Si detectors for SLHC.

Journal of Instrumentation, 4 P03011 2009.

# $\vec{E}$ For Different Geometries



# $\vec{E}$ For Different Geometries



# Hexagon Simulation





## Hole Concentration in Hexagon

$$\Phi_{eq}=10^{16}~1~\mathrm{MeV}~\mathrm{n}_{eq}/\mathrm{cm}^2,~V_{dep}=95V$$



#### Conventional 3D



- Electrode spacing: 50 μm
- ► Depth: 300 μm
- Shape: Conventional
- Diameter of doping columns: 10 μm
- When simulated with radiation, treated after  $10^{16} n/cm^2$
- Doping:
  - p+ center column
  - ▶ n+ corner columns
  - p type bulk (simulates after SCSI)

# $\vec{E}$ Conventional vs. BNL's



#### Conventional

Full Depletion Voltage was simulated to at 250 V.  $\Phi_{eq} = 10^{16} \text{ 1 MeV } n_{eq}/\text{cm}^2, \text{electrode spacing: } 50 \mu m$ 



On the left, the maximum (red) is 40,000 V/cm while on the right the maximum is almost 1,300,000.

# Type Comparison for Photon Science

At this size, we can only get full depletion before breakdown with n+ column and p+ trench. Left is n+ column fully depleted at 90 V, and right is p+ column at 500 V, not close to full depletion.





#### **Electrons Versus Holes**

- ► There is a difference between collecting and reading out electrons versus holes because of their mobility
- ▶ But because of the high  $\vec{E}$ , we don't see the mobility difference over such a small distance
- ▶ This is because we are near the saturation
- ► There is only a 20% difference in this case, so it is not significant
- ► The trapping is very minimal