TCT measurements with SCP slim edge strip detectors

<u>Igor Mandić</u>¹, Vladimir Cindro¹, Andrej Gorišek¹, Gregor Kramberger¹, Marko Milovanović¹, Marko Mikuž^{1,2}, Marko Zavrtanik¹

¹Jožef Stefan Institute, Ljubljana, Slovenia ² Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

Introduction:

• Scribe - Cleave - Passivate (SCP) slim edge strip detectors

 \rightarrow p-type strip detectors from CiS, pitch 80 µm, V_{fd} ~ 50 V

→ SCP(alumina) processed by Santa Cruz

- TCT measurements with focused laser light:
 - 1) IR light beam directed on the surface of strip detectors
 - \rightarrow measure charge collection across the detector surface
 - 2) red laser beam directed on the cleaved side of the strip detector

 \rightarrow probe electric field on the cleaved edge surface

• measure before and after irradiation with neutrons in reactor in Ljubljana

Scribing Cleaving Passivation (SCP) method to reduce the inactive area of sensors

[V. Fadeyev, 20th RD50 Workshop, Bari, 2012]

Detectors:

- measurements with 3 strip detectors
- SCP cut at different distance from the edge

Standard focused laser TCT Setup

Connection

- only bias ring bonded
- measure signals induced on bias ring

I. Mandić, 22nd RD50 Workshop, Albuquerque, NM, USA, 3-5 June 2013

IR laser, scan top surface, irradiated detector

Scan with IR laser over detector on the SCP cut side and on the standard side

→ Cut doesn't change CCE near strips

IR laser, scan top surface, irradiated detectors

• negligible difference between cut and not-cut side after irradiation

I. Mandić, 22nd RD50 Workshop, Albuquerque, NM, USA, 3-5 June 2013

Edge scan with red laser (preliminary!)

Red light enters ~ 3 µm into Si

- \rightarrow probe the *E* field at the cleaved edge surface
- \rightarrow similar to STCT measurements with CTS edgeless detectors (TOTEM)
 - (see e.g. E. Verbitskaya et al., NIMA 604 (2009) p. 246)

- \rightarrow electric field higher closer to the top (y = 0)
- \rightarrow at larger y carriers enter the field region by diffusion \rightarrow long pulses
- \rightarrow similar pulses in all 3 detectors \rightarrow no large effects of edge thickness

Electric field profile:

$$I(y,t \sim 0) \approx q E_w \left[\overline{v}_e(y) + \overline{v}_h(y) \right]; \quad \overline{v}_e(y) + \overline{v}_h(y) \propto E$$

→ induced current at $t \sim 0$ proportional to carrier velocity at laser spot location → electric field profile (only approximatelly because E_w is not constant)

→ at higher bias stronger field at larger distance from electrode
→ also at 150 V >> V_{fd} weak field near the back side

Simulation

from: Marc Christophersen, "6th Trento Workshop", March 2-4, 2011

No surface charge:

Not considering surface charges leads to wrong potential distribution at sidewall.

 \rightarrow low field at the back side because of surface charge

Edge scan with red laser

• measurements at higher voltages (V >> V_{fd} ~ 50 V)

Det 0, (220 µm edge)

• electric field all over the cleaved edge

Current before and after irradiation

→ Det 3: 1e14, Det 0: 5e14, Det 3: 1.5e15

→detectors annealed for 80 minutes at 60°C

→ calculation: $I = \alpha \cdot \Phi \cdot V$; V from depleted depth in pad geometry

- higher bias could be applied after irradiation

- no large difference between measured and bulk current after irradiation

I. Mandić, 22nd RD50 Workshop, Albuquerque, NM, USA, 3-5 June 2013

Pulses before and after irradiation

→ after irradiation long pulses not seen because of trapping

I. Mandić, 22nd RD50 Workshop, Albuquerque, NM, USA, 3-5 June 2013

• depleted depth in planar diode:

$$w_{dep} = \sqrt{\frac{2\varepsilon\varepsilon_0 V_{bias}}{e_0 \left| g_c \Phi_{eq} \right|}}$$

• after irradiation to 1.5e15 E field on the edge extends closer to value of w_{dep}

Depth of field at the edge

- measurement: max. y at which E > 0 (from field profile measurement)
- calculation: depletion depth in planar geometry

- measured and calculated values closer at higher fluences
 - \rightarrow after irradiation to high fluences field at the edge similar as in the bulk

Summary

• CCE measurements with focused IR laser light

 \rightarrow no influence of cut edge on CCE at strips before or after irradiation

- measurements with focused red laser light
 - \rightarrow nice tool to probe electric field on the edge surface
 - \rightarrow lower electric field on the edge at the back side of the detector
 - \rightarrow in agreement with simulations
 - \rightarrow after irradiation:

 \rightarrow indication that field on the edge more similar to the field in the bulk

I. Mandić, 22nd RD50 Workshop, Albuquerque, NM, USA, 3-5 June 2013

CCE scans at 50 V before and after irradiation

IR laser, scan top surface

Edge scan with red laser

Pulses:

Profiles before irradiation

I. Mandić, 22nd RD50 Workshop, Albuquerque, NM, USA, 3-5 June 2013

Pulses before and after irradiation

- maximum bias for this detector after irradiation to 1e14 50 V
- could go to 100 V after 5e14
- depletion depths: 1e14, 50 V: ~150 μm 5e14,100 V: ~100 μm

I. Mandić, 22nd RD50 Workshop, Albuquerque, NM, USA, 3-5 June 2013

Pulses before and after irradiation

Field profiles before and after irradiation

