p*-n-n* diode CV characteristics changes at various contact and body doping concentrations. *TCAD simulation*

> Ernestas Zasinas, Rokas Bondzinskas, Juozas Vaitkus *Vilnius University, Vilnius, Lithuania*

Device doping profile and energy band structure

- This work is devoted to analyze the capacitance of *p*nn** structure if the *n* region is differently compensated.
- The role of doping in *n** and *p** regions is also analyzed. The TCAD Synopsys program was used for simulations.
- The modeled device is a two dimensional *p*nn** silicon based diode having p^* contact region with gaussian doping profile of 2 um width and $N_p = 10^{19}$ cm⁻³ peak concentration. The n region homogeneous doping *concentration* N_d *was variated within* $10^{12} - 10^{17}$ *cm*⁻³.
- *The n* contact region doping profile was of gaussian type of variable 220 microns width and variable 10¹³ – 10²⁰ cm-3 peak concentration N⁺ . The device length L along direction perpendicular to junction planes was 50 and 300 m and its width W along the perpendicular dimension was chosen 600 m.*
- *Sentaurus TCAD output results for the 2D device are presented as for the 3D device of 1 m height. The mesh along length direction was 1000-4000 points and only 3 points along width direction. Such a mesh efectively models one dimensional device.*

$$
\text{Poisson} \qquad \qquad \nabla \cdot (\varepsilon \nabla \phi + \vec{P}) = -q(p - n + N_D - N_A) - \rho_{trap}
$$

Continuity equations $\nabla \cdot \vec{J}_n = qR_{\text{net}} + q\frac{\partial n}{\partial t}$ $-\nabla \cdot \vec{J}_p = qR_{\text{net}} + q\frac{\partial p}{\partial t}$

Carrier transport (hydrodynamic model)

$$
\tilde{J}_n = q\mu_n \left(n \nabla E_C + kT_n \nabla n - nkT_n \nabla \ln \gamma_n + \lambda_n f_n^{\text{td}} k n \nabla T_n - 1.5nkT_n \nabla \ln m_n \right)
$$

$$
\mathbf{\Sigma}_{p} = q \mu_{p} \Big(p \nabla E_{\mathbf{V}} - k T_{p} \nabla p + p k T_{p} \nabla \ln \gamma_{p} - \lambda_{p} f_{p}^{\text{td}} k p \nabla T_{p} - 1.5 p k T_{p} \nabla \ln m_{p} \Big)
$$

Fermi statistics for band electrons and holes

$$
n = N_{\rm C} F_{1/2} \left(\frac{E_{\rm F,n} - E_{\rm C}}{kT} \right) \qquad p = N_{\rm V} F_{1/2} \left(\frac{E_{\rm V} - E_{\rm F,p}}{kT} \right)
$$

intensity, as long as the defects induced by these particles are mainly the types of acceptor traps Shokley-Read-Hall recombination, doping dependent mobility were not specified. The CV characteristics were modeled at different donor doping concentrations and doping profiles of p*n and nn* junctions. Changing of donors concentrations in n and n* regions of the device effectively models its irradiation with a fluence of high energy particles of variable which localize electrons thus reducing their concentration as a result of compensation.

CV characteristics for the diode with narrow (2 microns) n contact region*

Characteristics are shown for several values of n base doping concentration (Nd) and n peak concentration*

In some cases ((b) panel, blue and green curves) depletion is not reached at reasonable experimental values depletion is possible only theoretically.

CV characteristics for the diode with wide (20 microns) n contact region*

Characteristics are shown for several values of n base doping concentration (Nd) and n peak concentration (N+). The ratio of concentrations is N⁺ /N^d = 10*

When n contact region is wide some 1/C² -V curves have two kinks signaling about two separate inputs to depletion effect from two junctions p-n and n-n**

(Similar to previous slide but $N_{+}/N_{d} = 100$) *CV characteristics for the diode with wide (20 microns) n* contact region*

Characteristics are shown for several values of n base doping concentration (Nd) and n peak concentration (N+). The ratio of concentrations is N⁺ /N^d = 100 When n* contact region is wide some 1/C² -V curves have two kinks signaling about two separate inputs to depletion effect from two junctions p-n and n-n**

(Similar to previous slide but $N_{+}/N_{d} = 1000$) *CV characteristics for the diode with wide (20 microns) n* contact region*

Characteristics are shown for several values of n base doping concentration (Nd) and n peak concentration (N+). The ratio of concentrations is N⁺ /N^d = 1000 When n* contact region is wide some 1/C² -V curves have two kinks signaling about two separate inputs to depletion effect from two junctions p-n and n-n**

- To explain the origin of the doubly kinked CV characteristic we suggest to present the p*nn* diode capacitance as a series of connected p*n and nn* capacitances.
- To see if this is correct we have recorded the dependence of potential P_{hi} in the middle of p^{*}nn^{*} diode on the applied external voltage U.

p-n-n^{*} diode modeled by two sequential junctions: p-n and n-n^{*} (device length 50 um n^{*} *length 20 um N_d* = 10¹²cm⁻³, N₊ = 10¹⁵cm⁻³)

1) calculated C-V for two seperate p-n and n-n* junctions (each of half of the p-n-n* diode length)

2) during calculation of p-n-n* diiode C-V potential φ(V) dependence at the half of diode length is recorded

Then we have simulated the CV characteristic of p*n junction and nn* junction devices having the same doping profile as they were in p^{*}nn^{*} diode junctions but their length being only half of the diode length. Having obtained functions C(U) for both junctions one may present the resulting capacitance of diode as: 1.8

$$
\frac{1}{C(U)} = \frac{1}{C_{pn}(\phi)} + \frac{1}{C_{nn*}(U - \phi)}
$$

This formula was applied and the result (circles) was compared with p-n-n* diodes C-V (line)

Apart from perfect coincidence Figure 6 also demonstrates that the sharp kink in the CV (and *1/C2(V)*) occuring at U ~ 370 380 V originates itself from the *nn** junction capacitance which saturates at ~170 180 V. Exactly the same voltage (*U – phi*) falls on the half of diode with *nn** junction when the external voltage $U = 370380$ V is applied (see corresponding earlier figure).

Acknowledgements.

This work was supported by the Lithuanian Academy of Sciences by project CERN-VU-2

Thank You for attention!