Radiation damage effects in the LHCb Vertex Locator

Zhou Xing Syracuse University

on behalf of the LHCb VELO group

22nd RD50 Workshop, Albuquerque, NM, USA

 \triangleright The LHCb experiment is dedicated to searching for New Physics in the heavy flavor sector including measurements of CP violation and rare decays

 \triangleright Single-arm spectrometer covering the forward *bb* production

6/3/2013

The LHCb Vertex Locator

- VELO (VErtex LOcator) silicon microstrip detector is the highest precision vertex detector at the LHC with its inner radius only ~8 mm from the proton beams (first active strip)
- \blacktriangleright It consists of mostly n⁺-on-n silicon sensors (only 1 n⁺-on-p module).
- \triangleright R- φ measuring strips: pitches 40-120 μ m, thickness 300 μ m
- \blacktriangleright Evaporative CO₂ cooling system \blacktriangleright Silicon operating temperature \sim -8 °C \blacktriangleright Two halves retracted to 30 mm during beam injection

Double metal readout lines

Each n⁺ implant is read out via a capacitively coupled first metal layer Strips connected via a second metal layer routing line to the edge of the sensor where the readout electronics are located

 \triangleright Routing lines perpendicular to R sensors strips and parallel to φ-sensors strips

VELO radiation environment

VELO operates in a harsh and non uniform radiation environment \triangleright At the nominal LHC energy, VELO accumulates $\sim 0.5 \times 10^{14}$ n_{eq} $/cm²$ in the inner most region per fh^{-1}

Bulk damages caused by defects

 \triangle Change of V_{dep} \blacktriangleright Increase of I_{leak} Decrease of charge collection efficiency

cross section at y=0

VETO

etations

most upstream

nteraction region

 σ = 5.3 cm

Fluence profile per fb^{-1} (Simulation)

 \triangleright In order to follow the evolution of the bulk current we should disentangle the two

Bulk current measurements

 \triangleright Bulk current in silicon 3000 ["clg] Luminosity 2000 well predicted and 1000

Currents [mA]

provides an important probe of accumulated fluence

Currents measured in operational conditions without beam

LHC Delivered Luminosity Measured 11111 **idual Sensor Curre** 0.04 0.02 **LHCb VELO Preliminary May**
2011 Sep
2011 May
2012 Sep
2012 $\frac{Jan}{2011}$

LHCb-PUB-2011-020 \triangleright The majority of the sensors show a sharp increase in bulk current as the sensors get more irradiated Consistent with MC predictions

LHCb-PUB-2011-021

6/3/2013

Current vs. temperature

 \triangleright The Current vs. temperature (IT) scan have been used to precisely extract the leakage current and monitor its evolution with accumulated radiation.

 \triangleright It can also disentangle bulk current from surface current

both before and after irradiation

before irradiation, Bulk dominated after

$6/3/2013$ 8

\blacktriangleright I-T curves can give a measure of effective band gap

$$
I(T) \propto T^2 \exp(\frac{-E_g}{2kT})
$$

 $\triangleright E_{\rm g} = 1.16 \pm 0.06 \text{ eV}$ (weighted average)

compared to 1.21 eV from A. Chilingarov, Tech. Rep. PH-EP-Tech-Note-2013-001

LHCb-PUB-2011-020 LHCb-PUB-2011-021 CERN-LHCb-DP-2012-005 **arXiv:1302.5259**

Method of Charge Collection Efficiency (CCE) measurements, with tracking sensors biased at 150 V and test sensors biased from 0

Dedicated data taking periods every 3-4 months with beam collisions

Extrapolate tracks to the test sensor and determine amount of charge collected

A single module, using 2010 CCE scan data Effective Depletion Voltage (EDV) is defined as the biasing point where MPV is 80% of the maximum

Fluence dependence I

EDV decreases with fluence before typeinversion

EDV increases with fluence after type-inversion >Type-inversion starts in inner radial regions

a single sensor, n type sensor

6/3/2013

Fluence dependence II

Observed EDV has a minimum of \sim 18 V before type-inversion

 \blacktriangleright Type-inversion occurs at 15×10^{12} n_{eq}/cm²

EDV of the p sensors begin to increase having received significantly less fluence than n type sensors

p sensors have no tracks in the inner most regions

Hamburg Model Comparison

 \triangleright The irradiation-induced change in the depletion voltage is modeled as a function of time, temperature and fluence by Hamburg Model

Good agreement at low and high fluences Discrepancy around type-inversion point due to finite charge collection time R. Wunstorf et al., Results on radiation hardness of silicon detectors up to neutron

fluences of 10^{15} n/cm², Nucl. Instrum. Meth. **A315** (1992), no. 13 149

Noise behavior

 \triangleright Noise vs bias voltage can be used to extract the EDV of the sensor

Ratio of irradiated EDV to unirradiated EDV (final/initial) plotted as a function of radius (before type inversion)

A high cluster finding efficiency is important to elements of tracking and vertexing

Cluster finding efficiency

Cluster Finding Efficiency (CFE) measured by comparing the track extrapolation to locally reconstructed cluster

 \geq Oct. 2011, after 1.15 fb⁻¹

reduced efficiencies

Outer region sensors have

 \blacktriangleright March 2011, after 40 pb⁻¹ \blacktriangleright CFE is ~ 100% across the whole sensor

Radiations can change the field profile across the inner sensor which induces a capacitive coupling of charges to routing lines for R-sensors This coupling through routing lines reduces cluster finding efficiency \triangle Charge induced on a routing line can introduce a noise cluster for the inner R sensors

 \triangleright Coupling is shielded when the track is close to the strip

Coupling causes larger inefficiencies when the track is close to the routing line

Radiation damage effects are studied with several monitoring methods

Current measurements (vs time, temperature) gain insights on measuring fluence and aging

Change of depletion voltage with fluence agrees well with expectations

Noise measurements can also monitor the radiation

Other effects: cluster finding efficiency decrease observed in some regions of R-sensors due to second metal layer effect

Currently no significant effect on physics performance

A. Affolder et al. Radiation Damage in the LHCb Vertex Locator Submitted to JINST(e-print arXiv:1302.5259 [hep-ex], CERN-LHCb-DP-2012-005)