Radiation damage effects in the LHCb Vertex Locator

Zhou Xing Syracuse University

on behalf of the LHCb VELO group

22nd RD50 Workshop, Albuquerque, NM, USA

➤The LHCb experiment is dedicated to searching for New Physics in the heavy flavor sector including measurements of CP violation and rare decays

Single-arm spectrometer covering the forward *bb* production

The LHCb Vertex Locator

- ➤VELO (VErtex LOcator) silicon microstrip detector is the highest precision vertex detector at the LHC with its inner radius only ~8 mm from the proton beams (first active strip)
- > It consists of mostly n^+ -on-n silicon sensors (only 1 n^+ -on-p module).
- >R-φ measuring strips: pitches 40-120 µm, thickness 300 µm
- Evaporative CO₂ cooling system
 Silicon operating temperature ~ -8 °C
 Two halves retracted to 30 mm during beam injection

Double metal readout lines

Each n⁺ implant is read out via a capacitively coupled first metal layer
 Strips connected via a second metal layer routing line to the edge of the sensor where the readout electronics are located

Routing lines perpendicular to R sensors strips and parallel to φ-sensors strips

VELO radiation environment

 VELO operates in a harsh and non uniform radiation environment
 At the nominal LHC energy,
 VELO accumulates ~ 0.5×10¹⁴ n_{eq}
 /cm² in the inner most region per fb⁻¹

Bulk damages caused by defects

Change of V_{dep}
 Increase of I_{leak}
 Decrease of charge collection

cross section at y=0

VETO

etation

most upstream

nteraction region

 $\sigma = 5.3 \text{ cm}$

efficiency

15 mrad

≻In order to follow the evolution of the bulk current we should disentangle the two

Bulk current measurements

Currents [mA]

Bulk current in silicon well predicted and provides an important probe of accumulated fluence

Currents measured in operational conditions without beam

Luminosity [pb⁻¹] LHC **Delivered Luminosity** 2000 1000 Measured idual Sensor Curre 0.04 0.02 LHCb VELO Preliminary Sep 2012 Jan 2011 May 2011 Sep 2011 May 2012

3 fb⁻¹ delivered luminosity

The majority of the sensors show a sharp increase in bulk current as the sensors get more irradiated Consistent with MC predictions LHCb-PUB-2011-020

Current vs. temperature

>The Current vs. temperature (IT) scan have been used to precisely extract the leakage current and monitor its evolution with accumulated radiation.

≻It can also disentangle bulk current from surface current

before irradiation, Bulk dominated after

≻I-T curves can give a measure of effective band gap

$$I(T) \propto T^2 \exp(\frac{-E_g}{2kT})$$

Delivered luminosity $[fb^{-1}]$	Bias voltage [V]	E_{g} [eV]
0.48	100	$1.17 \pm 0.07 \pm 0.04$
0.48	150	$1.18 \pm 0.05 \pm 0.04$
0.82	150	$1.14 \pm 0.06 \pm 0.04$
1.20	150	$1.15 \pm 0.04 \pm 0.04$

 $E_g = 1.16 \pm 0.06 \text{ eV}$ (weighted average)

compared to 1.21 eV from A. Chilingarov, Tech. Rep. PH-EP-Tech-Note-2013-001

LHCb-PUB-2011-020 LHCb-PUB-2011-021 CERN-LHCb-DP-2012-005 arXiv:1302.5259

Method of Charge Collection Efficiency (CCE) measurements, with tracking sensors biased at 150 V and test sensors biased from 0 to 150 V

Dedicated data taking periods every 3-4 months with beam collisions

Extrapolate tracks to the test sensor and determine amount of charge collected

A single module, using 2010 CCE scan data
 Effective Depletion Voltage (EDV) is defined as the biasing point where MPV is 80% of the maximum

Fluence dependence I

EDV decreases with fluence before type-inversion
 EDV increases with

>EDV increases with
 fluence after type-inversion
 >Type-inversion starts in
 inner radial regions

a single sensor, n type sensor

6/3/2013

Fluence dependence II

Effective depletion voltage

60

20

➢Observed EDV has a minimum of ~18 V before type-inversion

Type-inversion occurs at $15 \times 10^{12} n_{eq}/cm^2$

≻EDV of the p sensors begin to increase having received significantly less fluence than n type sensors

p sensors have no tracks in the inner most regions

All sensors included

n-on-p type

×1012

Hamburg Model Comparison

➤The irradiation-induced change in the depletion voltage is modeled as a function of time, temperature and fluence by Hamburg Model

Good agreement at low and high fluences
 Discrepancy around type-inversion point due to finite charge collection time

 R. Wunstorf et al., Results on radiation hardness of silicon detectors up to neutron

fluences of 10^{15} n/cm², Nucl. Instrum. Meth. A315 (1992), no. 13 149.

Noise behavior

≻Noise vs bias voltage can be used to extract the EDV of the sensor

➢Ratio of irradiated EDV to unirradiated EDV (final/initial) plotted as a function of radius (before type inversion)

➤A high cluster finding efficiency is important to elements of tracking and vertexing

Cluster finding efficiency

Cluster Finding Efficiency
 (CFE) measured by
 comparing the track
 extrapolation to locally
 reconstructed cluster

Before irradiation

Charge loss due to double metal effect

≻Oct. 2011, after 1.15 fb⁻¹

reduced efficiencies

>Outer region sensors have

March 2011, after 40 pb⁻¹
CFE is ~ 100% across the whole sensor

Radiations can change the field profile across the inner sensor which induces a capacitive coupling of charges to routing lines for R-sensors
This coupling through routing lines reduces cluster finding efficiency
Charge induced on a routing line can introduce a noise cluster for the inner R sensors

Routing Line distance [µm]

➤Coupling is shielded when the track is close to the strip

➤Coupling causes larger inefficiencies when the track is close to the routing line

Dependence of the coupling

➢Radiation damage effects are studied with several monitoring methods

Current measurements (vs time, temperature) gain insights on measuring fluence and aging

≻Change of depletion voltage with fluence agrees well with expectations

≻Noise measurements can also monitor the radiation

>Other effects: cluster finding efficiency decrease observed in some regions of R-sensors due to second metal layer effect

Currently no significant effect on physics performance

A. Affolder et al. Radiation Damage in the LHCb Vertex Locator Submitted to JINST(e-print arXiv:1302.5259 [hep-ex], CERN-LHCb-DP-2012-005)