

Luca.Bottura@cern.ch

Fils et câbles supraconducteurs du futur

AFF Commission Cryogénie et Supraconductivité. Les Journées Thématiques au CERN: LHC, premiers résultats et perspectives. June 6th-7th, 2013

Overview

- The drive from the LHC
 - LTS wires and cables at 50
 - HTS conductors at 25
- Beyond the LHC
- Summary and conclusions

Overview

- The drive from the LHC
 - LTS wires and cables at 50
 - HTS conductors at 25
- Beyond the LHC
- Summary and conclusions

At 50, LTS's have reached maturity?

Data by courtesy of J. Parrell (OST)

Typical HEP-grade Nb₃Sn wires

Cu:non-Cu: 1.25

Filament diameter: 58 μm

Number of filaments: 132

 J_C (15 T. 4.2 K) > 1575 A/mm²

RRR > 150

UL > 400 m ... 800 m

Strand diameter: 1.0 mm

Cu:non-Cu: 1.25

Filament diameter: 48 μm

Number of filaments: 192

 $J_{\rm C}$ (15 T. 4.2 K) > 1350 A/mm²

RRR > 150

UL > 400 m ... 800 m

NOTE: procurement assisted by the special in-kind contribution from France

Material needs – Nb₃Sn

Approximately 26 tons of HEP-grade Nb₃Sn will be needed in the coming 5 years

Cabling by A. Bonasia, L. Oberli; graphics by M. Brice (CERN)

Cabling challenges

Range of Cabling Parameters

Data by courtesy of R. Scanlan, D. Dietderich, H, Highley (LBNL, Berkeley) and L. Oberli (CERN)

The case of the FRESCA2 cable

Compaction vs. Degradation

- Lowest degradation is obtained when the compaction is in the range of 85%...86%
- This is a delicate, lengthy and difficult optimization

Data by courtesy L. Oberli (CERN) and E. Barzi (FNAL)

DS 11 T MB models

MBHSP02 Performance

- Test completed in April 2013
 - Bmax= 11.7 T 97.5% of design field B=12 T (78% of SSL at 1.9 K)
- Issues to be addressed
 - Long training
 - Conductor degradation
 - Negative ramp rate dependence at dl/dt<20 A/s and 4.5 K

Tests at Fermilab, reported by courtesy of M. Karppinen, CERN

From HQ to MQXF

LARP HQ performance

14

The test of HQ02 is on-going, but we see very promising results!

Quench #

10

12

2

Effect of magnetization in dipoles

Nb₃Sn magnetization is large, and affects field quality at injection: reduce filament diameter!

Sub-element diameter vs. counts

 Small sub-elements (filament diameter) implies complex, costly and risky stacking

A Nb₃Sn dream wire for the LHC

Longitudinal strain effects

B Bordini et al 2013 Supercond. Sci. Technol. **26** 075014 doi:10.1088/0953-2048/26/7/075014

Transverse strain effects...

... more on transverse stress...

No irreversible degradation till 200 MPa

... and even more

Transverse stress sample holder in construction for the FReSCa-1 test facility, at CERN, 200 MPa capability in 10 T field and 32 kA (60 kA) current.

Overview

- The drive from the LHC
 - LTS wires and cables at 50
 - HTS conductors at 25
- Beyond the LHC
- Summary and conclusions

From materials to applications

Superconductors as seen by the eye of a physicist The grand challenge of today is to find the room temperature superconductors

From materials to applications

Superconductors as seen by the eye of an engineer

The grand challenge of today is to develop the technology of high-field superconductors

From materials to applications

Superconductors as seen by the eye of a manager The grand challenge of today is availability of long lengths of reasonably priced commercial materials

A future for HTS at the LHC

A model of link by A. Ballarino and the TE-MSC-SCD team (CERN)

- SC links for the LHC
 - Quasi-DC operation
 - GHe operation (5 K ... 25(35) K)
 - Single cables operated at up to 20 kA
 - Multi-cable (
 — 50 high-current cable) assemblies
 - Horizontal + Vertical (□ 80 m) configuration
 - 2 kV electrical insulation
- Potential for use of MgB₂, or other HTS materials in specific location demanding for more margin and/or tolerance

More details in the talk of L. Rossi on HL-LHC

Superconductors for the LHC SC Links

		Φ (mm)	W (mm)	Th (mm)	Tmax (K)	Ic (‡) (A)
^(†) MgB ₂	wire	< 1	-	-	25	≥ 400
MgB ₂	tape	-	3.7	0.67	25	≥ 400
YBCO	tape	-	4	0.1	35	≥ 400
BSCCO 2223	tape	-	4	0.2	35	≥ 400

Within reach today

- (†) bending radius R_B ≤ 80 mm
- (‡) applied field B ≤ 0.5 T

Reacted wires

Ltot ~ 1000 km of conductor for series production

By courtesy of A. Ballarino (CERN)

SC Link cables

Insulated and twisted tapes, for cables of modest amperage (can be assembled into larger cables for higher current)

Twisted wires for high current

3 kA @ 25 K 20 kA @ 25 K

(Dummy cables)

Work in TE-MSC-SCD, by courtesy of A. Ballarino (CERN)

SC Link prototype test

- New feed-box for supercritical helium (10 g/s) variable temperature (5 K \dots > 77 K) and high current (13 kA)
- Flexible cryostat to host various cable types and materials, up to 20 m length

Overview

- The drive from the LHC
 - LTS wires and cables at 50
 - HTS conductors at 25
- Beyond the LHC
- Summary and conclusions

BSCCO-2212

(a) ↑846 °C (b) ↑871 °C (c) ↑884 °C

100 μm

(d) ↑896 °C (e) ↓877 °C (f) ↓872 °C

In-situ tomography

- As drawn Quenched at 888 C
- processed
- Voids in 2212 are a clear issue, that has been recently understood, but not yet mastered
 - Is it originated by intrinsic or extrinsic sources?
 - What is a practical means to overcome it?

F. Kametani, et al., Superconductor Science and Technology, 24, 075009(7pp) (2011)

Improvement by CIPping

The Business of Science®

Core densification result in double J_E values to ~470 A/mm² at 15 T

By courtesy of Y. Huang (OIST)

Improvement by OPHT

2212 Filaments contain many HAGBs - and (without bubbles) have high Jc

Kametani and Jiang unpublished

Transverse section images

Longitudinal section images

Polished sections of filaments in their surrounding Ag

Exposed filaments show their plate-like nature and frequent strong misalignments.

EBSD images show some local texture and significant 2nd phase content within filaments

The filaments cannot be fully connected - yet do have high Jc

BSCCO-2212, "easy" to cable

Bi-2212 Rutherford cables (Arno Godeke LBNL) with mullite insulation sleeve

R. Scanlan, D. Dietderich, A. Godeke, LBNL

T. Shen, Strand and Cable Engineering Group, Fermilab nGimat/NCSU

REBCO – how do you cable tapes?

Stacks in Conduit Conductor M. Takayasu, MIT

Roebels, W. Goldacker, KIT

Cable-On-Round-Core
D. van der Laan

0.92 mm

Stacked tapes conductors, EuCARD WP7 Task 4, Very High Field Dipole Insert

Roebel cables measured @ 4.2 K

Applied $\sigma_{trans.} = 40 \text{ MPa}$

J. Fleiter, CERN, PhD thesis of the University of Grenoble

CERN, Superconductors Lab

Roebel cables results

Measurements @ CERN in the FReSCa-1 Test Station

J. Fleiter, CERN, PhD thesis of the University of Grenoble

Beyond the LHC

EuCARD2: Develop 10 kA class HTS accelerator cable using Bi-2212 and YBCO. Test stability, magnetization, and strain

WP10: a 5 T, 40 mm bore HTS dipole

Summary - LTS

- Is Nb₃Sn mature? Yes, and no
 - performance of Nb₃Sn wires has seen a great boost in the past decade (factor 3 in J_C w/r to ITER)
 - However, Nb₃Sn magnets were never built nor operated in accelerators. Manufacturing, quench, training, protection, strain tolerance, field quality are the focus today to make this new technology a reality
 - A dream wire will pave the way for the next step in circular accelerators

Summary - HTS

- Can HTS displace LTS? Not today
 - Much needs to be done to bring this technology to a point where it can be sold as "mature"
 - Materials have potential that can be exploited
 - OPHT for BSCCO-2212
 - Thicker layer for YBCO tapes
 - The Holy Grail of a round YBCO wire
 - Production quantities, homogeneity and cost need to evolve
 - Step-up application demands, from self-field (SC-link is an ideal test-bed) to high-field accelerator magnets (feasibility)

