LC cost-effective ECAL studies

Angela Lucaci-Timoce

CLIC ECAL studies

ECAL in CLIC_ILD_CDR

• Sampling calorimeter: 30 (29?) layers of silicon-tungsten (23 X_0 , 1 λ_I)

- 30 tungsten absorber plates:
 - 2.1 mm \times 20 \approx 0.6 X_0
 - 4.2 mm imes10 pprox 1.2 X_0
- $\bullet~0.5$ mm thick silicon cells of $5.1\times5.1~\text{mm}^2$

- CLIC_ILD_CDR: ECAL is the cost driver (35%), mostly due to the price of the Si wafers
- Would like to decrease the price without loosing performance ⇒ optimisation studies

Previous studies: CLIC ECAL

- J. Nardulli, ►LCD-Open-2011-004, ► talk
- Idea: change number of layers and alter absorber thickness such that total absorber thickness (i.e. total X₀) remains constant
- Performance: **energy resolution** for single photons and $Z \rightarrow uds$ events
- Found that number of layers can be decreased (18 instead of 20 in first stack, 7 instead of 9 in second stack), with small degradation in performance ⇒ ECAL cost decrease of 14%

• Example for $Z \rightarrow uds$ events:

Previous studies: ILD ECAL

- T. Yoshioka, H. Ueno, talk at CALICE meeting, Sept. 2012
- Hybrid ECAL: combination of silicon and scintillator planes
- Reconstruction : PandoraPFANew + Strip Splitting Algorithm (SSA) (see
 In the second seco
- Calibration constants:
 - determined separately for Si-ECAL and Sc-ECAL
 - checked with 1–50 GeV photons (linearity, resolution)

• Performance: jet energy resolution

• 27 layers (not default)

	Thickness	
	active	absorber
Hybrid ECAL	2.0 mm scintillator 0.5 mm silicon	2.1 mm for inner 20 layers
Sc-ECAL	2.0 mm scintillator	3.5 mm for
Si-ECAL	0.5 mm silicon	outer 7 layers

Previous studies: ILD ECAL

● T. Yoshioka, H. Ueno, → talk at CALICE meeting, Sept. 2012

Jet energy resolution as a function of Sc/(Sc+Si) ratio (in number of layers)

1: alternate structure

2:20 Si layers, 7 Sc layers

(3):13 Si layers, 14 Sc layers

4: 7 Si layers, 20 Sc layers

In these configurations, the performance does not degrade so much up to the layer ratio 50%.

 \bullet \Rightarrow Should not have more than half of the layers with scintillators

Previous studies: ILD ECAL

● T. Yoshioka, H. Ueno, → talk at CALICE meeting, Sept. 2012

Energy dependence

- Performance of default SiW-ECAL much better, probably due to different configuration
- Performance of alternate structure midway between SiW-ECAL and Sc-ECAL

• T. H. Tran, *SiW-ECAL with reduced number of layers*, **Park** at CALICE meeting, Sept. 2012, Cambridge

 10% degradation is observed going from 30 to 20 layers for 91 GeV sample, 3-7% for other energies

Comparison of previous studies

J. Nardulli, CLIC ILD

ECAL model	W layers	Layer thickness
25 layers	18 7	2.333 mm 5.4 mm
23 layers	18 5	2.333 mm 7.56 mm
23 layers	16 7	2.625 mm 7.56 mm
21 layers	16 5	2.625 mm 7.56 mm

T. H. Tran, ILC ILD

ECAL model	W layers	Layer thickness
30 layers	20 9	2.1 mm 4.2 mm
26 layers	17 8	2.4 mm 4.8 mm
20 layers	14 6	3.15 mm 6.3 mm

- Why 2 absorber thicknesses?
- Observation: H. Videau, *Detector design driven by simulations*, \checkmark at ECFA workshop, Valencia 2006: for same total thickness, same number of X_0 , resolution is systematically better with a finer sampling in front
- Explanation: significant fraction of electromagnetic energy comes from low energy photons (E < 2 GeV) ⇒ using thinner sampling in the first part helps

Possible designs for a hybrid ECAL

Dimensions of scintillator tiles

- Take by F. Sefkow, meeting on future ECAL technologies, CERN, July 2012 \Rightarrow 1 mm thick tiles seem possible
- Current developments: 2 mm thick tiles
- What about tile size? $1 \times 1 \text{ cm}^2$, $1.5 \times 1.5 \text{ cm}^2$, $2 \times 2 \text{ cm}^2$?

For the moment, assume total X_0 should be kept constant

Suggestions

Scintillator only, in default configuration:
 20 × 2.1 + 9 × 4.2 mm W + 29 × 2 mm scintillator

- needed for determining calibration constants
- and for comparison with Si-ECAL case

Half of the layers silicon, half of the layers scintillator:

 $15 \times 2.1 \text{ mm}$ W $\times 0.5 \text{ mm}$ Si $+14 \times 3.2 \text{ mm}$ W $\times 2 \text{ mm}$ scintillator or

 15×2.5 mm W $\times0.5$ mm Si $+14\times3.0$ mm W $\times2$ mm scintillator

• Not clear how important is the sampling in the beginning \Rightarrow could look at photon energy in generated events

How to assess performance of a hybrid ECAL?

- Inspired from G. W. Wilson, On evaluating the calorimetry performance of detector design concepts, **PLCWS 2005**
- "Physics-based": optimize the detector using a specific benchmark process and looking at the final precision on physics quantities
 - Disadvantage: not a direct comparison of different detector designs, as sometimes not the same analysis methods can be applied
 - Examples:
 - τ -lepton production (tests separation of charged hardons from photons from π^0 decay),
 - slepton production (test lepton ID)
- "Detector-based": evaluate detector performance using simple detector-level observables with full simulation
 - Preferred, offers direct comparison of different detector designs
 - Examples:
 - jet energy resolution
 - single particle response studies ($\gamma, \ e^{\pm}, \ \tau^{\pm}$)
 - two particles separation (e from γ , γ from charged/neutral hadron, etc. . . .)
 - π^0 reconstruction?
 - photon angular resolution?

- CLIC ILD: driver SEcal04 (model ILD_00_EcalSc02)
 - Steering parameter *Ecal_Sc_Si_Mix*: a set of numbers (one for every two layers) to indicate the type of active material, and, in scintillator case, the orientation of the **strips**
- Maybe it can be used without many modifications for CLIC ILD

- Dimensions of scintillator tiles?
- Studies of X₀ or assume it constant?
- Is it important to keep 1:2 W ratio?
- PandoraPFA calibration with different samplings and active materials?
- Scintillator layers thicker than silicon layers ⇒ impact of increased coil radius on total cost?
- Who are the people involved?
- What time scale?