## What Can Big Data and Cloud Computing do for Scientits?

Salima Benbernou Université Paris Descartes LIPADE-Data Managment and Mining Group Salima.benbernou@parisdescartes.fr

Marseille Data Preservation Workshop Nov 2012

### A Golden Era in Computing

|                  | Powerful   |               |
|------------------|------------|---------------|
| Veu Tuka         | multi-core |               |
|                  | processors | Comoral       |
| Explosion of     |            | General       |
| domain           |            | purpose       |
| applications     |            | graphic       |
| applications     |            | processors    |
|                  |            |               |
|                  |            | Superior      |
| Proliferation of |            | software      |
| devices          |            | methodologies |
|                  |            | methodologies |
|                  |            |               |
| XA7° 1 1 1       | Vi         | rtualization  |
| wider bandy      | wiath lev  | veraging the  |
| for              |            | nowerful      |
| communica        | ation      | hardware      |
|                  |            |               |

### **Evolution of Internet Computing**



### Big Data in the world



### **Big data: Some applications**

| Application                                    | Big Data                                            | Algorithms                                             | Compute<br>Style   |  |
|------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|--------------------|--|
| Scientific study<br>(e.g. earthquake<br>study) | Ground model                                        | Earthquake<br>simulation, thermal<br>conduction,       | НРС                |  |
| Internet library<br>search                     | Historic web<br>snapshots                           | Data mining                                            | MapReduce          |  |
| Virtual world<br>analysis                      | Virtual world<br>database                           | Data mining                                            | TBD                |  |
| Language<br>translation                        | anguage Text corpuses,<br>anslation audio archives, |                                                        | MapReduce &<br>HPC |  |
| Video search                                   | Video data                                          | Object/gesture<br>identification, face<br>recognition, | MapReduce          |  |

### Why? WEB is replacing the Desktop

















### Paradigm in Computing



### Top ten largest databases (2012)

![](_page_7_Figure_2.jpeg)

### What is Cloud Computing?

- **Cloud computing** is Internet-based computing, whereby shared resources, software and information are provided to computers and other devices ondemand, like the electricity grid.
- The cloud computing is a culmination of numerous attempts at large scale computing with seamless access to virtually limitless resources.

### What is Cloud Computing?

- Delivering applications and services over the Internet:
  - Software as a service (SaaS)
- Extended to:
  - Infrastructure as a service: Amazon EC2 (IaaS)
  - Platform as a service: Google AppEngine, Microsoft Azure (PaaS)
- Utility Computing: pay-as-you-go computing
  - Illusion of infinite resources
  - No up-front cost
  - Fine-grained billing (e.g. hourly)

### **Essential Characteristics**

![](_page_10_Figure_1.jpeg)

istratus

![](_page_10_Picture_2.jpeg)

### More in cloud ...

### Data as a Service (DaaS)

![](_page_11_Figure_2.jpeg)

Collect multiple streams of data.

Process data as it flows.

Deliver to databases, apps, dashboards, reports, queries, etc.

### Figure 2: Basic data value chain

![](_page_11_Figure_7.jpeg)

Data Delivery as service

Source: Liaison Technologies

### What is Cloud Computing?

• Cloud federation, Business Process as a Service (BPaaS) (Benbernou et al Cloud-I@VLDB2012, ICWS2012) and workflow

![](_page_12_Figure_2.jpeg)

Compose and mashup

The next step forward in the evolution of cloud computing

### Syndicated mixed-channel cloud delivery model

![](_page_13_Figure_1.jpeg)

### Market moves to « Everything as a Service » !

![](_page_14_Figure_1.jpeg)

### **Exploring Cloud for Scientific missions**

- Gaining traction in commercial world (Amazon, Google, Yahoo, ..) offering pay as you go cycles for extra computing power in organisations.
- Does the approach meet the computing and data storage demands of the nation's scientific community?

# Scientific data grows much faster than technology

![](_page_16_Figure_1.jpeg)

Wintercorp Survey

### Scientific managment now

- Legacy software
- In main memory of supercomputers
- Database too rigid to use

As data grows, problem changes

- Difficult and slow
- Some data discarded

### Bridge CS and domain sciences

### Data-driven science

Past:

- Theory
- Simulation
- Experiments

The « fourth paradigm » Scientific breakthrough computing on massive data

![](_page_18_Picture_6.jpeg)

From Anastasia Alaimaki

### The CERN large hadron collider, now

![](_page_19_Picture_1.jpeg)

100 M sensors/dectection 40 M detecttions/sec

### **ATLAS** experiment (simplified)

![](_page_20_Figure_1.jpeg)

### Some current projects

### The Magellan project

![](_page_21_Picture_2.jpeg)

![](_page_21_Picture_3.jpeg)

•Serving the needs of mid- range computing and future dataintensive computing workloads.

•A set of research questions was formed to probe various aspects of cloud computing from performance, usability, and cost.

# Open Science Data Cloud

The OCC is a not-for-profit supporting the scientific community by operating cloud infrastructure.

![](_page_22_Picture_2.jpeg)

![](_page_22_Picture_3.jpeg)

![](_page_22_Picture_4.jpeg)

![](_page_22_Picture_5.jpeg)

![](_page_22_Picture_6.jpeg)

![](_page_23_Figure_0.jpeg)

## Project Bionimbus

![](_page_24_Picture_1.jpeg)

Institute for Genomics & Systems Biology

| Bio                                   | nimbus Cl                                                                                   | oud                                                                  |                                                                  |                                                                     | 1                                            | 1               | _                             |
|---------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------|-----------------|-------------------------------|
| Bionir                                | nbus is a cloud-ba                                                                          | sed system fo                                                        | r managing, analy<br>Using Bionimbus                             | zing and sharing g                                                  | enomic da<br>Support                         | ta.<br>Sponsors |                               |
| Comp<br>60 Ge                         | elete Genomics<br>nomes Release                                                             |                                                                      | e Bionimbus as                                                   | Mirror Site for                                                     | CGI Edit                                     | Search          | n Bionimbus Cloud<br>Search > |
| Comple<br>Genome                      | te Genomics Inc. has<br>es dataset.                                                         | chosen the Bior                                                      | nimbus Community                                                 | Cloud as a mirror site                                              | e for their <mark>6</mark> 0                 | 0               |                               |
| The 60<br>availabl<br>commo<br>Lambda | Genomes dataset ca<br>e to researchers. Wit<br>dity Internet, as wel<br>Rail and Internet2. | an be found <mark>he</mark> r<br>h the Bionimbus<br>I as via high pe | re, as part of the po<br>Community Cloud,<br>erformance research | ublic data that Bioni<br>the data is available<br>networks, such as | mbus make<br>via both the<br>the Nationa     | s<br>e<br>I     |                               |
| The gen<br>sequent<br>reads. 1        | nomes in the datase<br>cing of these 60 ge<br>Fhis dataset will com                         | t have on avera<br>nomes generate<br>plement other p                 | age more than 55x<br>ed more than 12.2<br>ublicly available who  | mapped read covera<br>terabases (Tb) of to<br>ble genome data sets  | age, and the<br>otal mapped<br>, such as the | e<br>d          |                               |

1000 Genomes Project's recent publication of six high-coverage and 179 low-coverage human genomes. Forty of the sixty genomes are available now and the remainder will be available at the end of March.

### www.bionimbus.org (biological data)

### Project Matsu 2: An Elastic Cloud For Earth Science Data (& disaster relief)

![](_page_25_Figure_1.jpeg)

### matsu.opencloudconsortium.org

### **Issues: Semantic and heterogeneities**

![](_page_26_Figure_1.jpeg)

### Meta data templates

- The need of templates describing how a cloud offering is presented & consumed.
- The offering is abstracted from the specific resources offered.
- The provider uses service template to describe in a general form what a cloud service can offer.

### Issue : Scientific workflows

![](_page_28_Figure_1.jpeg)

### What are scientific workflows?

•Scientific experiments/computations/simulations modeled and executed as wokflows

•Characteritics :deal with huge mouts of data, are often long running, usually data driven, can integrate muliple data sources (i.e. sensors)

![](_page_29_Figure_3.jpeg)

### Scientific workflow:Trident

![](_page_30_Figure_1.jpeg)

The Panoramic Survey Telescope and Rapid Response helps to detect objects in the solar system that might pose a threat to Earth.

### Sharing scientific workflows

![](_page_31_Figure_1.jpeg)

The myExperiment social web site was launched in November 2007 and with over 1100 workflows

# Issue: scientific workflows and the

### clouds

- Workflow technology can be applied to improve the IT support for scientific experiments and simulations
  - Provide an end-to-end support for experiments
    - Automate all phases of an experiment pre-, post-processing, execution, visualization - by a single workflow
  - and business processes
    - That may also require support for simulations
  - Parallel execution of experimental runs
- Clouds will have an even more important role for scientific experiments and simulations

## Evolution for the workflow

- Workflow are already used in E-science
- Some workflow systems in e-science: Kepler, Taverna, Pegasus, Trident, Simulink, ...

- •To be improved
  - Robustness, fault handling
  - •Flexibility and adaptability
  - Reusability
  - Scalability
  - •Interaction with users, userfriendliness of tools
  - science skills required from scientist...

### Issue: Querying and processsing

## big data

MapReduce

- A computing model based on heavy distribution that scales huge volumes of data (data-intensive computing on commodity clusters)
  - 2004: google publication
  - 2006:open source implementation, Hadoop.
- Data distributed on a large number of shared nothing machine
- To process and to analze large quantities of data
  - Use parallelism
  - Push data to machines.

### What is MapReduce Used For?

### • At Google:

- Index building for Google Search
- Article clustering for Google News
- Statistical machine translation
- At Yahoo!:
  - Index building for Yahoo! Search
  - Spam detection for Yahoo! Mail
- At Facebook:
  - Data mining
  - Ad optimization
  - Spam detection

### What is MapReduce Used For ?

### • In research:

- Analyzing Wikipedia conflicts (PARC)
- Natural language processing (CMU)
- Climate simulation (Washington)
- Bioinformatics (Maryland)
- Particle physics (Nebraska)
- <Your application here>

### Issue: privacy preserving

![](_page_37_Picture_1.jpeg)

Privacy aware outsourcing the data
Privacy aware reusing fragment from scientific worflows

Privacy aware crowdsourcing the data (expertise people)

### **Research questions:**

- Scientific data managment essential technology for accelerating scientific discoveries
- Develop technology to encapsulate a scientist's data and analysis tools and to export, save and move these between clouds.
- 2. Develop protocols, utilities, and applications so that new racks and containers can be added to data clouds with minimal human involvement.
- 3. Develop technology to support the long term, low cost preservation of data in clouds.

### Human problem

# Pushing the collaboration between scientists and computer science

![](_page_39_Picture_2.jpeg)

 Avoid more than one year to get data and learn more about scientific applications and datasets.

MERCI! THANK YOU! ----FRANCAR.