

HP-PS design progress: Super-ferric magnet option

Yannis PAPAPHILIPPOU

LAGUNA-LBNO HP-PS design Meeting 24/09/2012

ALAgvan HP-PS parameters						R
Parameters	PS ₂	HP-PSa	HP-PSb	HP-PSc	HP-PSd	Н
Circumference [m]	1346.4	1256	1009	763	125	56
Symmetry	2-fold			3 / 4-fold		
Beam Power [MW]	0.37			2.0		
Repetition rate [Hz]	0.42	2	2	2.6	1.3	
Kinetic Energy @ inj./ext. [GeV]	4/50	4/50	4/40	4/30	4/5	50

1.25

6.1

0.17/1.7

6.5

6.8/6.7

85

23.8

The less constrained ring is the more costly one, i.e. high-energy, longest ring, with lowest

Last parameter iteration to be done considering super-ferric magnets with around 2.T peak field

Reduction in circumference, electrical consumption, normalized emittance, aperture, and thereby cost

1.6

6.0

0.21/1.7

5.0

8.6/8.5

95

21.2

60/60

1.6

7.5

0.27/1.7

4.0

-0.2/-0.2

Resonant NMC arc, doublet LSS

11/11

5

108

22.7

1.9

4.0

10.5/10.3

105

19.3

0.17/1.7

6.5

1.1

1.4

0.17/1.7

35.1

-0.13/-0.2

NMC arc, doublet LSS and DS

9/6

3.2

80

5.2

Ramp rate, space-charge, losses, acceptance, space (cost)

repetition rate and with the closest parameters to PS2

Getting 2MW power not straight-forward (even with a fully dedicated linac)

Protons/pulse [1014]

Lattice type

Dipole ramp rate [T/s]

Norm. emit. H/V [µm]

Max. beta H/V [m]

Max. dispersion [m]

Dipole Gap height [mm]

Rms electrical Power [MW]

Bending field @ inj/ext. [T]

Fractional beam loss [10-4]

Space-charge tune-shift H/V

1.0

2.5

3.1

13.7/13.4

120

17.0

Super-ferric HP-PS

- Circumference determined by energy and bending field @ extraction, and the filling factor (i.e. total bending length over circumference) $C\approx 3.335\frac{2\pi\beta E}{BF_f}$
- □ Filling factor for SPS and PS is ~2/3 (FODO cells) but for PS2 is ~0.5 (NMC cells mandatory for low-losses in a high-power machine) and difficult to be increased
- Considering a 2.1T bending field (super-ferric dipole) @ 50GeV kin. Energy the circumference can be reduced to around 1km (1017m)
- ☐ The repetition rate can remain to 1s with ramp rate of 3.1T/s

Parameters	PS ₂	HP-PSe	SF HP-PS
Circumference [m]	1346.4	1256	1017
Bending field @ ext. [T]	1.7		2.1
Total Energy @ ext [GeV]	51	51	51
Filling factor	0.47	0.5	

SF HP-PS Intensity

Parameters	PS ₂	HP-PSe	SF HP-PS	
Circumference [m]	1346.4	1256	1017	
Protons/pulse [10 ¹⁴]	1.1	2.5	2.5	
Harmonic number	180	167	135	
Number of bunches	168	161	129	
Protons/bunch [10 ¹¹]	6.5	15.6	19.5	
Rel. β/γ @ inj.	0.98/5.26			
Norm. emit. H/V [μm]	9/6	13.7/13.4	12.2/11.9	
SC tune-shift H/V	-0.13/-0.2	-0.2/-0.2		

$$\Delta Q_{x,y} = -\frac{r_0 N_p C}{2(2\pi)^{3/2} \sigma_z \beta \gamma^2 \epsilon_{x,y}}$$

- Limited by space-charge, and other collective effects, especially at injection
- Beam considered as for PS2 with a 25ns bunch structure, although this is not necessary
- Machine filled with bunches leaving a 150ns gap for kicker rise/fall time (300ns for PS2)
- Assumed that bunch length is scaled with square root of harmonic number
 - For keeping space-charge tune-shift below -0.2, vertical emittance increased accordingly, and transverse acceptance reduced

Electrical power

Parameters	PS ₂	HP-PSe	SF HP-PS
Dipole ramp rate [T/s]	1.4	3.1	3.1
Total dipole length [m]	632.8	628	508.5
Gap height [mm]	80	120	113
Rms Power [MW]	5.2	17.0	-

- □ Repetition rate imposed by source/linac
- ☐ For linear ramp and very short flat bottoms the ramp rate much higher than the one of PS2
- Super-ferric option reduces drastically electrical power but extra cost/power for cryogenics

Losses control

Parameters	PS ₂	HP-Pse	SF HP-PS
Circumference [m]	1346.4	1256	1017
Beam Power [MW]	0.37	2.0	
Total uncontrolled loss limit [kW]	1.3	1.3	1.0
Fractional beam loss [10 ⁻⁴]	35.1	6.5	5.0

- □ Limit of uncontrolled losses around the ring of 1W/m
- □ Assuming all losses occur at extraction (pessimistic), the fractional beam loss limit is set to a few 10⁻⁴, i.e. almost an order of magnitude lower than PS2
- □ Consistent with requirements of other high-power synchrotrons (e.g. SNS accumulator ring)
- More difficult for shorter ring
- □ Design (and space) of an efficient collimation system is mandatory

Layout and lattice

- □ Design based and adapted from PS2
- 3 or 4-fold symmetric ring to accommodate in separate LSS injection/collimation, extraction and RF
- □ NMC lattice necessary to avoid transition and reduce losses
- ☐ Use resonant NMC cells to increase filling factor (no DS)
- Doublet LSS leave more space for BT equipment, collimation and RF
- Need to fit the ring in the present CERN layout and according to the first phases of LAGUNA (position of SPL to HP-PS transfer-line, HP-PS to target, injection to SPS...).

**Example: Resonant NMC

- ☐ Starting from PS2 resonant arc
- 5 NMC arc cells with horizontal phase advance tuned to 8π
- Due to space constraints can only achieve 46GeV for dipole field of 1.7T
 - Not an issue for slightly shorter long straight sections and higher field magnets
- Limited tunability (provided only by LSS in the horizontal plane)
- Very good non-linear dynamics performance

HP-PS parameters

Parameters	PS ₂	HP-PSe	SF HP-PS	
Circumference [m]	1346.4	1256	1017	
Symmetry	2-fold	3 / 4-fold		
Beam Power [MW]	0.37	2.0		
Repetition rate [Hz]	0.42	1.3		
Kinetic Energy @ inj./ext. [GeV]	4/50			
Protons/pulse [1014]	1.1	1.9	2.5	
Dipole ramp rate [T/s]	1.4	3.1		
Bending field @ inj/ext. [T]	0.17/1.7	0.17/1.7	0.21/2.1	
Fractional beam loss [10 ⁻⁴]	35.1	6.5	5.0	
Space-charge tune-shift H/V	-0.13/-0.2	-0.2/-0.2		
Lattice type	NMC arc, doublet LSS and DS	Resonant NMC arc, doublet LSS		
Norm. emit. H/V [μm]	9/6	13.7/13.4	12.2/11.9	
Max. beta H/V [m]	60/60			
Max. dispersion [m]	3.2			
Dipole Gap height [mm]	80	120	113	
Rms electrical Power [MW]	5.2	17.0	-	

Next steps for 2012

- Finalize parameters for super-ferric magnet option
- Produce a first order optics design and layout
 - ☐ Arc, LSSs for injection/extraction, collimation and RF
 - ☐ Tunes, chromaticity, correction
 - ☐ SF magnet parameters
 - ☐ Start discussion on RF system parameters
 - ☐ Adapt PS2 collimation
- □ Design progress followed in monthly (or bi-weekly) meetings
- ☐ The "players":
 - ☐ J. Alabau-Gonzalvo, A. Alekou, F. Antoniou, YP (ABP)
 - ☐ B. Goddard, A. Parfenova (BT)
 - ☐ I. Efthymiopoulos, C. Lazaridis (MEF)
 - ☐ M. Benedikt, R. Steerenberg, Fellow (OP)
 - ☐ F. Gerigk, E. Chapochnikova (RF)