PROGRAMMING FOR TODAY’S
PHYSICISTS & ENGINEERS

V. Erkcan Ozcan
Bogazi¢i University
With inputs from Ozgiir Cobanoglu

ISOTDAQ’13, February 01, 2013

@00

WORK ENVIRONMENT

Todays (astro)particle, accelerator experiments and information
industry: Large collaborations...

Need more than ever:

Code sharing/reuse - object orientation, atomic code, portability,
version control

Use languages/libraries/tools you might not know.
Code binding - framework integration

Usually with a “scripting” language: python, tcl, etc.
Documentation & good visualization

Doxygen, UML, wikis, bug-tracking, histogramming & graphing
Working remotely

Cloud computing/grid, batch systems, remote login/monitoring
Not reinventing the wheel

Finding the right libraries: thread-safe, well-tested, maintained

Open sourcing: Help others not reinvent the wheel

In these side boxes, there will be
ISOTDAQ’13, Thessaloniki - V. E. Ozcan 2 tiny tips for more advanced stuff.

COPY & PASTE, BUT KNOW WHAT You Do

Inheriting code from others is good - sometimes almost
compulsory.

But dont do it before you understand the underlying logic.

Ex: You are asked to write a piece of code in C++ that tells
you how many days there is in a given month, ie.

> howmanydays april
april has 30 days.

Luckily your colleague has a code that does a similar task:
converting the month number into month name, ie.

> whichmonth 6
The 6th month is june.

ISOTDAQ’13, Thessaloniki - V. E. Ozcan 3

HASH MAPS

#include <iostream>
#include <trl/unordered map>

const char* suffix(unsigned int nm) {
if (nm==1) return "st";
if (nm==2) return "nd";
return "th";)}

using namespace std;
int main(int argc, char*argv[]){
if (argc!=2) return 1;

int mnth = atoi(argv([l]);
if (mnth<l || mnth>12) return 1;

trl::unordered map< int, const char* > months;

months[1]
months[2]

january";
"february";

months[9]
months[10]

"september"”;
"october";

months[3] = "march";

months[4] = "april";

months[5] = "may";

months[6] = "june";

months[7] = "july";

months[8] = "august";

months[11l] = "november";

months[12] = "december"”;

cout << "The " << mnth << suffix(mnth)

<<" month is " << months[mnth] << endl;
return 0;

}

ISOTDAQ’13, Thessaloniki - V. E. Ozcan

Hash map: Convert some identi
(keys) into some associated values.

Useful for fast search
algorithms, for cacheing data, for
implementing associative arrays.

tdaq software commonly use
hash maps as part of pattern
recognition by clusterization or
as part of networking for
resolving server/client
communications.

unordered_map is part of the STL
iIn the upcoming C++0x standard.

A SIMPLE DICTIONARY

#include <iostream>
#include <trl/unordered map>

using namespace std;
int main(int argc, char*argv([]){

trl::unordered map< const char#*, int > months;
months|["“january”] = 31;
months[“"february”"] = 28;
months["march”] = 31;
months|["april”] = 30;
months["may"] = 31;
months|["“june"”] 30;
months|[“july”] = 31;
months|["august”] = 31;
months|["september”] = 30;
months|["october”] = 31;
months|["november"”] = 30;
months["december”] = 31;

cout << "february : ndays= " << months["february"] << endl;
cout << "jJune : ndays= " << months["june"”] << endl;
cout << "december : ndays= " << months["december"] << endl;

return 0;

ISOTDAQ’13, Thessaloniki - V. E. Ozcan 5

Modification and testing

Checked from
documentation that
hashes for char* are also
available.

Tested with a few
examples: looks good...

> g++ test.cxx

> ./a.out

february : ndays= 28
june : ndays= 30
december : ndays= 3l

So now the final product?

FINAL CODE

#include <iostream>

#include <trl/unordered map> Assume enduser is well_
using namespace std; k)EBP\(l\/GBCj.

int main(int argc, char*argv[]){
if (argcl=2) return 1; In redl-life, never dO

trl::unordered map< const char*, int > months; 'ff](]*!
months|["“january”] = 31;
months[“"february”"] = 28;
months["march”] = 31;
months|["april”] = 30;
months["may"”"] = 31;
months|["“june”] = 30;
months|["“july”] = 31;
months|["august”] = 31;
months|["september”] = 30;
months|["october”] = 31;
months|["november”] = 30;
months|["december”] = 31;

" "

cout << argv[l] << has << months[argv[1l]]
<< " days" << endl;

return 0;

ISOTDAQ’13, Thessaloniki - V. E. Ozcan 6

FINAL CODE

#include <iostream>

#include <trl/unordered map> Assume enduser is well_
using namespace std; t)GBP\(l\/EBCj.

int main(int argc, char*argv[]){

if (argcl=2) return 1; In redl-life, never dO

trl::unordered map< const char*, int > months; 'ff](]*!
months["“january”] = 31;

months[“"february"”"] = 28;

months["march”] = 31; .

months["april®] = 30; Final product...
months["may"”"] = 31;

months|["“june”] = 30;
months|["“july”] = 31;
months|["august”] = 31;
months|["september”] = 30;
months|["october”] = 31;
months|["november”] = 30;
months|["december”] = 31;

cout << argv[l] << has << months[argv[1l]]
<< " days" << endl;

return 0;

ISOTDAQ’13, Thessaloniki - V. E. Ozcan 6

FINAL CODE

#include <iostream>

#include <trl/unordered map> Assume enduser is well_
using namespace std; t)GBP\(l\/EBCj.

int main(int argc, char*argv[]){
if (argcl=2) return 1; In redl-llfe, never dO
trl::unordered map< const char*, int > months; 'ff](]*!
months|["“january”] = 31;
months[“"february"”"] = 28;
months["march"”] = 31; .
months["april®] = 30; Final product...
months["may"”"] = 31;

months|["“june”] = 30;

months["july"] = 31; does NOT Work!

months|["august”] = 31;
months|["september”] = 30;
months|[“"october”] = 31;

months["november”] = 30; > g‘l"" f@StCXX
months|["december”] = 31; .

> ./a.out june
cout << argv[l] << has << months[argv[1l]]

<< " days" << endl; june has O days

return 0;

ISOTDAQ’13, Thessaloniki - V. E. Ozcan 6

FINAL CODE 2

#include <iostream>

#include <trl/unordered map>
#include <ext/hashtable.h>
using namespace std;

struct stringEqual{

bool operator()(const char* strl, const char* str2) const {
return strcmp(strl,str2)==0; }

}:
int main(int argc, char*argv([]){
if (argcl=2) return 1;

trl::unordered map< const char#*, int,
__gnu_cxx::hash<const char*>, stringEqual > months;

months|[“january”] = 31;

months|[“"february"] = 28;
months|["march”] = 31;
months["april”] = 30;
months["may"”] = 31;

months|["“june”] = 30;
months["“july”] = 31;
months|[“august”] = 31;
months|["september”] = 30;
months|[“"october”] = 31;

months|["november”] = 30;
months|[“"december”] = 31;
cout << argv[l] << " has " << months[argv[1l]]

<< " days" << endl;
return 0;

}

ISOTDAQ’13, Thessaloniki - V. E. Ozcan 7

Write a comparison
function between entries...

Template also needs a
hash function.

good news: gcc
extensions have one.

> g++ test.cxx
> ./a.out june
june has 30 days

It works!

FINAL CODE 3

#include <iostream>
#include <ext/hash map>

using namespace std;

struct stringEqual({

bool operator()(const char* strl, const char* str2) const {

return strcmp(strl,str2)==0; }

}:
int main(int argc, char*argv([]){
if (argcl=2) return 1;

nu cxx::hash map< const char*, int,
— L _map

__gnu_cxx::hash<const char#*>, stringEqual > months;

months["january”] = 31;
months|[“"february”"] = 28;
months["march”] = 31;
months["april”] = 30;
months["may"”] = 31;
months["“"june”] = 30;
months["“july”] = 31;
months|["august”] = 31;
months|["september”] = 30;
months|[“"october”] = 31;
months|["november"”] = 30;
months|["december”] = 31;

cout << argv[l] << " has " << months[argv[1l]]
<< " days" << endl;
return 0;

ISOTDAQ’13, Thessaloniki - V. E. Ozcan

Mixing trl::ordered_map with
__gnu_cxx::hash is a really bad
choice.

Why? Find this out yourself, by
finding out how many times
stringEqual is being called.

Proper code without mixing - all
using gnu extensions.

Finally we have code that works
fast, reliably & correctly.

We are done...

> g++ test.cxx
> ./a.out december
december has 31 days

FINAL CODE 4

#¥include <iostream>

#include <string.h>

#include <trl/unordered map>
using namespace std;

int main(int argc, char*argv[]){

if (argcl=2) return 1;

trl::unordered map< string, int > months;

months|["“january”"] = 31;
months|[“"february"] = 28;
months["march”] = 31;
months|["april”] = 30;

3

months["may”] = 31
months["“june”] = 3
= 3

- O

months[“july"]
months|["august”]
months|["september"”]
months|[“"october”] = 31
months["november"”] = 30;
months[“"december”] = 3

-
»
'
313

30;

W -

- O~

r
.
r

cout << argv([l] << has << months[argv([1l]]
<< " days" << endl;

return 0;

ISOTDAQ’13, Thessaloniki - V. E. Ozcan

How about a portability?

Not portable in time: trl::xxx has a
chance of becoming part of C++, while
__gnu_cxx are likely to disappear.

Not portable in space: No chance of your
code working with any other compiler.

Need a simple, clean implementation.
Know and use STL consistently.

Steep learning curve, but STL containers
& classes saves you a lot of effort.

They are also MUCH safer - resistance to
buffer overflows, thread-safety, etc.

Finally we have code that works fast, reliably

& correctly &
it is short and portable.

Or at least this is what you might believe.

DOCUMENTATION

#include <iostream>
#include <string.h> o Internal and external documentation!
// Might need to remove trl when C++X0 finalises
#include <trl/unordered_map>

It helps the poor stranger who
inherits your code, i.e. be kind to

using namespace std;

int main(int argc, char*argv([]){ main.l-ainers
// Don't do anything if number of arguments != 1 g
if (arge!=2) return 1; 3 years not using your code: you
// Might need trl removed, when C++X0 finalises Wl“ be a pOOl" S.I-r.anger.|
// Using unordered map - should be scalable

// This would not work if string => char* array
trl::unordered map< string, int > months;

Documentation generators like
Doxygen are handy.

months["january”] = 31;
months[':fcbrugry"] = 28; // have not considered leap years WWW.doxyqen.Org
months["march"] = 31; o,
months|["april”] = 30; . ¢ .
months ["may"] = 31; For large projects, consider using
months|["june”] = 30; . .
monthal"ale"] = 31, UML (unified modelling language)
months["august”] = 31; H : o
e e K BN from start, i.e. during design.
months["october”] = 31; £
months ["november"] = 30; PS: For your own benefit, it also
months|["december”] = 31; h l 1_ k h 1_ F h
// not implemented any catches for non-existing month names S psl (;/ eep 2 2 Ogy 2 oW you
cout << argv|[l] << " has " << months[argv([1l]] ComP| e ran Your coae.

<< " days" << endl;
return 0; More on this later...

Note: C++XO0 finalized into C++11 &
ISOTDAQ’13, Thessaloniki - V. E. Ozcan 10 unordered_map is now part of the C++.

http://www.doxygen.org
http://www.doxygen.org

KEEPING TRACK

Version control systems are a must while collaborating.
But also excellent for personal use if you want fo keep track of what you do.
The “basic” ones are CVS and Subversion.

Particularly for your private repositories, distributed management systems are a
must.

Your instance is the full repository with history.

My favorite is git : git-scm.com (but others like mercurial, bazaar, etc. around)

FOSS initially developed for Linux kernel code management.

Linus Torvalds: "The slogan of Subversion for a while was "CVS done
right”, or something like that, and if you start with that kind of slogan,
there's nowhere you can go. There is no way to do CVS right.”

git: (v) to go. [Turkish to English translation.]

That is what you will soon say to cvs/svn-users: “please git”!

ISOTDAQ’13, Thessaloniki - V. E. Ozcan 11

http://git-scm.com
http://git-scm.com

GIT EXAMPLE

O—{master| do everything with trl:-unordered_map and stl strings. Erkcan Ozcan <erk
® all gnu extension version Erkcan Ozcan <erks -
® introduce a stringEqual() function and use __gnu_cxx::hash Erkcan Ozcan <erk S 'l'ar'l' em P"'y repoer'O]"Y'
® code to read command line argument and use char* to int unordere | Erkcan Ozcan <erk | 5
® dictionary from char* to int. static examples Erkcan Ozcan <erk
® zeroth version. takes number of month and print out the month's n | Erkcan Ozcan <erk

> git init

SHAL ID: ef?7d2837833187c42b6108662 f98558a54a3e33d84 e 9 Ro Add a new ﬁle and Commlf eaCh
‘ind (next)(prev) commit [comaining: Fw] \ version:

(Coamren) | > git add test.cxx
8 Diff O Old version O New version Lines of context: 3 @ [] > gill' COmmi'l' '|'€S'|'.CXX

Juthor: Erkcan Ozcan <erkcanfErkcans-MacBook.local>» 20818-81-31 4

‘omni tter: Erkeon Ozcan (erkcan@Erkeans-HacBook. local> 2016-01 |y Check differences to committed code:

arent: d9sebd9bd668c9681 fH27429d461980823920131344 (introduce a s
hild: 627cbdSela8e88ch3784475c8a8beBb1 22444951 (do everything

et > git diff test.cxx

Precedes: }
all gnu extension version tk-based GUI (among others):
index fd28911..6c8b3ec 100644 st } > g i.l-k &

PR -1,6 +1,5 RR
#include <{iostream? }
-#include itPIEhnordered_map}

-#include <ext/hashtable.h? } Clean/COmPress rePOSifory:

+#include <ext ,-"'h-]:—.h_map > W

using namespace std; > git gc --aggressive

P -13,7 12,7 BR int main{int arge, char*argv[]i{

if {argc!=2) return 1; . ’

ISOTDAQ’13, Thessaloniki - V. E. Ozcan 12 git with color: git config --global color.ui true

D

)

GIT EVERYWHERE

\ETWURKWUKLY : . :
ity spesedon Network W Even Microsoft is adopting

ittpr/fwww.networkworld com/news/2013/013013-microsoft-embraces-open-source-git-for-266280 html
(]
git now. ©

News

Microsoft embraces open-source Git for development tools | Many o pen-source hostin g
Microsoft has added Git support to Visual Studio and Team Foundation Server ‘ si1'es FOI” F ree (ll ke GI"'HUb) ;

By Joab Jackson, IDG News Service
anuary 30,2013 01:50 PMET

githUb Explore GitHub Search Features Blog

[DG News Service - Once vehemently opposed to open-source software, Microsoft has warmed to the dev
will now take the unusual step of incorporating an open-source program developed by Linus Torvalds into

. Star Fork
Microsoft is integrating the widely used Git, a distributed revision control and source code management (St freehep / freehep-vectorgraphics ® |5 !
IDE (integrated developer environment) and Team Foundation Server (TFS), two of the company's main t
Code Network Pull Requests o0 Issues 5 Graphs

"TFS is a very popular tool in the enterprise, and Git has grown up in the open-source community," said B
fellow and the TFS product unit manager. "By embracing Git, we want to bridge that gap, soitcanbe a g1 FreeHEP Vector Graphics — Read more
community and for the enterprise.” http:/java.freehep.org/vectorgraphics

Harry will announce the integrations at the Microsoft ALM Summit being held this week in Redmond, W @ CloneinMac > ZIP | HTTP SSH GitRead-Only https://github.com/freehep/freehep-vectorgraphics.gi [Read-Only access
TFS is software for managing the application development lifecycle, including requirements management,
minaonmnm tocting and denloument Micrneoft alen offers a hosted version of TRS. called Team Fnannd-« P branch: master ~ Files Commits Branches 1 Tags 5
—— T ————
freehep-vectorgraphics / [+ D 325 commits

fix mixed up ANA_DEFS file

Merge branch 'master' of /Users/erk: 3 o Document how to deploy to central
o e git is a powerful
‘ git test donszelmann authored 2 months agc latest commit 8@a7e94ebf @-
_ Merge branch 'master" of / I I b .l.' .|. I
’ Merge branch 'master' ¢ CO Cl Ora |O n OO . I freehep-graphics2d 2 months ago [maven-release-plugin] prepare for next development iteration [donszelmann)]
Merge branch 'master' ¢ ‘
® *. ExclusionPlot.C: reactiva C S X B freehep-graphics3d 4 months ago More fixes for #1 [donszelmann)
B uncertainties for signal ¢ d h y
//) Merge branch 'master’ ¢ O nS| er s arl n g O ur B freehep-graphicsbase 2 months ago [maven-release-plugin] prepare for next development iteration [donszelmann] E
@ incude MujetsMatrixMet| .
M e{g;s;ﬁgcch A'r;éil::)err'e: re POS |1'0ry O n C IO Ud 51.0 rag e B freehep-graphicsio-cgm 3 months ago Forgotten rename of export file types [donszelmann]
myhadd.sh : minor sz : l'k b S , ‘ P ———— —
polynom fitter addedc, services like DI”OP oX. => e —
Merge branch 'mastel E ¥ 5 A
compare.H does no It '|'h h "' g '|'
P e s asier an nosTing IT on a
do GRL=true
trivial improvements, ne Separd'l'e Serve r.
/0‘ Merge'branch 'master' of /U§ers

ISOTDAQ’13, Thessaloniki - V. E. Ozcan 13

http://www.networkworld.com/news/2013/013013-microsoft-embraces-open-source-git-for-266280.html
http://www.networkworld.com/news/2013/013013-microsoft-embraces-open-source-git-for-266280.html
http://www.networkworld.com/news/2013/013013-microsoft-embraces-open-source-git-for-266280.html

KEEPING HISTORY

Particularly when learning from someone or doing things for the first
time, it is useful to keep a record of the commands, choices, etc. you have
input.

Just dumping your shell history (history > mysteps.txt) is the simplest
thing fo do.

To make best use of it, try increasing its cache size. (export
HESTSTZE=500).

However if the work you are doing requires logging into multiple

machines, you might want to fry the command script. It logs
everything on the terminal.

Screens scrollback buffer is also useful. Set its size in your
~/.screenrc file: defscrollback 500

If you jump between many directories, pushd / popd / dirs is
useful. Consider alias’ing pushd as cd (needs some .bashrc magic
though to keep all functionality of cd intact).

ISOTDAQ’13, Thessaloniki - V. E. Ozcan 14 see more on pushd as cd in the back-up slides.

USE THE RIGHT TOOL

Do not use a sledge hammer fo crack a nut!

For quick and not-so-dirty solutions, use inferpreted languages, like

python, perl, fcl...

These languages are also commonly used as part of binding frameworks:
fast C/C++ modules instantiated, executed and their results bridged.

Personal favorite Python: Very expressive language with largest standard

library after Java.

Our dictionary example is a
treat with the built-in
dictionary type, dict.

Realise that using the right
tool might mean convincing
colleagues/boss who like the
“old way”.

ISOTDAQ’13, Thessaloniki - V. E. Ozcan

from sys import argv

if len(argv)!=2:

exit()
months={'january':31, 'february':28, 'march' ¢31
‘april’' :30, 'may'’ ¢:31, 'june'’ :30
"July' ¢:31, 'august' :31, 'september':30
'october’':31, 'november':30, 'december' :31}
usrmonth argv[l].lower()
if usrmonth in months:
print usrmonth, "has"”, months[usrmonth], "days”
else:
print "sorry no such month is known"

15

SWISS ARMY KNIFE

Your swiss army knife in the *nix world is awk!
Named after Aho, Weinberger, Kernighan.

A full-fledged (Turing-complete) interpretted (compilers
also exist) programming language hidden inside one single
command, and present in ANY *nix environment.

Ex: browse all pictures from your camera - haphazardly
distributed in a directory and resuffix all .mp4 files to .3gp.

find . | awk -F '{if ($NF=="mp4") print "mv",$0,$0}' |
sed s/'\.mp4'/'\.3gp'/2 | awk ‘{system($0)}

In the *nix world small gears make big machines...

awk goes best with sed, head, tail, sort, find, grep.

If you prefer a leatherman tool instead of a swiss

ISOTDAQ’13, Thessaloniki - V. E. Ozcan 16 army knife, there is perl, python, ruby, etc.

SIMPLEST GUI SOLUTION

If you need to prepare a graphical user infterface, I would strongly suggest
considering a web browser as a solution.

Present in pretty much all systems.

HTMLS is extremely powerful - as most of us are well aware at the moment.
AJAX allows asynchronous communication.
With MathJax, it is very easy to embed latex formulas.

Want to use GPU support? WebGL is present in almost all major browsers
except Internet Explorer.

There are also tools like GWT which compile ordinary Java code into
javascript. Similarly for python.

If you want to see what you can do, have a look at
some of these:

Skulpt - python interpreter in js;
chrome experiments;
KickdS; WebGL playground, etc.

ISOTDAQ’13, Thessaloniki - V. E. Ozcan 17

http://www.skulpt.org/
http://www.skulpt.org/
http://www.chromeexperiments.com/
http://www.chromeexperiments.com/
http://www.kickjs.org/
http://www.kickjs.org/
http://webglplayground.net/
http://webglplayground.net/
http://www.chromeexperiments.com/detail/webcam-toy/
http://www.chromeexperiments.com/detail/webcam-toy/
http://www.chromeexperiments.com/detail/webcam-toy/
http://www.chromeexperiments.com/detail/webcam-toy/
http://www.chromeexperiments.com/detail/webcam-toy/
http://www.chromeexperiments.com/detail/webcam-toy/
http://www.chromeexperiments.com/detail/webcam-toy/
http://www.chromeexperiments.com/detail/webcam-toy/
http://www.chromeexperiments.com/detail/webcam-toy/
http://www.chromeexperiments.com/detail/webcam-toy/
http://www.chromeexperiments.com/detail/webcam-toy/
http://www.chromeexperiments.com/detail/webcam-toy/
http://www.chromeexperiments.com/detail/webcam-toy/
http://www.chromeexperiments.com/detail/webcam-toy/
http://www.chromeexperiments.com/detail/webcam-toy/
http://www.chromeexperiments.com/detail/webcam-toy/
http://www.chromeexperiments.com/detail/webcam-toy/
http://www.chromeexperiments.com/detail/webcam-toy/
http://www.chromeexperiments.com/detail/webcam-toy/
http://www.chromeexperiments.com/detail/webcam-toy/
http://www.chromeexperiments.com/detail/webcam-toy/
http://www.chromeexperiments.com/detail/webcam-toy/
http://www.chromeexperiments.com/detail/webcam-toy/
http://www.chromeexperiments.com/detail/webcam-toy/
http://www.chromeexperiments.com/detail/webcam-toy/
http://www.chromeexperiments.com/detail/webcam-toy/
http://www.chromeexperiments.com/detail/webcam-toy/

ORGANIZE YOUR CODE

Have a meaningful directory structure.
Do not create all your projects at the root of your home directory.

When installing from source:

./configure --help is your friend. Use it to learn how to direct your
installation to non-default (/usr/local/) directories.

Choose directory names wisely - put version numbers.

Softlinks are your friends. Use them to define hide different
versions of code. Ex: Yes r o
O

1 erkcan admin
29 erkcan admin

29 erkcan admin

Exercise permission features properly. Minimum rights principle as
usual in all *nix.

BACK TO PORTABILITY

Use makefiles. 311: a.out

Makefiles that come with many modern ic:t 0@ test.cxx

i : g++ -Cc -0 30 $<
packages might look complex at first a.out: test.o
Write your own once, and it will be all ght ¥
Clear. JPHONY: clean all
clean:
Parallel compilation (with many cores): rm -f test.o ./a.out
make -j4

Learn about autoconf, automake, CMake, etc.

Even if you dont know how to write configurations, learn how to
use them.

For Java + parallel compilation, try Antf, Maven.
ant.apache.org maven.apache.org

ISOTDAQ’13, Thessaloniki - V. E. Ozcan it

http://ant.apache.org
http://ant.apache.org
http://maven.apache.org
http://maven.apache.org

DEBUGGING, PROFILING

Injecting printf/cout statements for debugging your code becomes
unmanageable when your code becomes too much integrated in a
framework.

gdb, GNU Debugger, is the way to go.

Most crashes are due to accessing memory locations that are not to be
accessed: dereferencing NULL pointers, overflowing arrays,... gdb can
give you a stack trace at the minimum - your core files become
meaningful.

Basic gbd commands: run, bt, info <*>, help

However gbd is missing a major functionality: Large piece of code
frequently means memory leaks.

Try the smart pointers, as they become more common (part of C++x0
standard, you can also try BOOST libraries, www.boost.org).

Use a profiling tool like Valgrind (available also on MacOSX)! valgrind.org

ISOTDAQ’13, Thessaloniki - V. E. Ozcan 20

http://www.boost.org
http://www.boost.org
http://valgrind.org
http://valgrind.org

WORKING REMOTELY

ssh is a way of life.

Dont write your password all the time, by using public key
authentication. => Especially important with svn over ssh.

Generate keys with 'ssh-keygen -t dsa’. Use a passphrase. Don't copy
id_dsa, only copy id_dsa.pub. Use ssh-agent to save repeatedly
entering passphrase. Append your public key to ~/.ssh/authorized_keys
on machines that you want to log in to.

ssh can do a lot more for you. Ex: Improve scp speed.

tar cjf - Phys48IAutumnl2 | ssh
ozcan@www.phys.boun.edu.tr tar xjf - -Cc "~/"

sshfs is a nice way to mount ssh-accessible space.
But does not offer the goodies in using AFS.

When you want to share files with other users on AFS, remember that
simple UNIX file permissions are not enough.

On a Mac OSX machine, sshfs is easily installed
ISOTDAQ’13, Thessaloniki - V. E. s oaty 21 using MacFusion + OSXFuse (or Fuse4X).

SECURITY

Do not use the same password everywhere.

Particularly for one-time user passwords used on various
websites, consider using webbrowser extensions that
generate random passwords for you. Or generate random
sequences Yyourself and save them with tools like Apple
Keychain, KDE KWallet, Gnome Keyring, efc.

Firefox users: Dont forget to set a master password.

Open a new terminal (actually a new session if possible)
whenever you sit on a new public terminal.

It is as simple as running script with proper command
line arguments to log everything you type on the terminal.

ISOTDAQ’13, Thessaloniki - V. E. Ozcan 22

PROTECTING YOUR WORK TERMINAL

screen is GNUs hidden gem.

Part of the GNU base system: Present by default on almost
all *nix machines around.

Creates virtual terminals - that do not die when
connection is lost, X crashes, efc.

Your processes can Keep on working affer you log-off.
(Alternative is nohup, but has a lot fewer features and
quite often it is blocked from users.)

screen cannot be described, it is lived!

Try it. Tip: CTRL+A then ? fo see shortcut keys.

PS: By the way, learn to use the shortcuts of your

War‘ning: It can be addictive... ot Al O IR R 2

If you want a colorful visualisation of your

li :
ISOTDAQ’13, Thessaloniki - V. E. Ozcan 23 IRl e e eln

https://launchpad.net/byobu
https://launchpad.net/byobu

PROTECTING YOUR WORK

VNC, Virtual Network Computing, is the equivalent of screen, but for
full-fledged graphical desktops.

You can create virtual desktops that live without you being logged
on.

You need a vnc client on your side, and a vnc server on the remote
machine. (Mac OSX 10.5+ screen sharing is VNC compatible.)

NEVER use VNC directly - your desktop can/will be watched by
men-in-the-middle.

ssh port forwarding is the right way to go! Ex:

ssh -L5902:<VNCserverlIP>:5902 <user>@<remoteMachine>
vncserver :2 -geometry 1024x640 -localhost -nolisten tcp

Additional bonus: VNC communication is/can-be made much faster
than X forwarding.

ssh port forwarding can allow you to go behind
24 firewalls by connecting remote ports too!

ISOTDAQ’13, Thessaloniki - V. E. Ozcan

GETTING THE MOST OUT OF YOUR MACHINE

Nowadays even the laptops are multicore.

However most physics-code authors dont know anything
about threading, etc.

Task spooler - vicerveza.homeunix.net/~viric/soft/ts/

Extremely light-weight batch system.

Pure C, no dependencies, compiles and works easily on
GNU systems with gcc (Linux, Mac OSX, Cygwin, etc.).

export TS_MAXCONN=20

export TS_SLOTS=<#cores>
ts

- If you don’t know what Cygwin is and you are
.I-S <J Ob > using Windows, you MUST see the backup slides.

If you don’t set TS_MAXCONN, you might reach
the OS’s limit for maximum number of open files.

ISOTDAQ’13, Thessaloniki - V. E. Ozcan 25

http://vicerveza.homeunix.net/~viric/soft/ts/
http://vicerveza.homeunix.net/~viric/soft/ts/

BATCH SYSTEMS

PBS or LSF are common in HEP institutions.
Good practice to learn about your resources as early as possible.
GRID is the other big thing. Get your certificate.
Beware! Getting a certificate can be time consuming.
You will also need fo join a virtual organization. ’
Cloud is the future. Ex: Have a look at Apache Hadoop. @ =[ajo]a]n)

ts wrapper script to make it behave like PBS's gsub command g@ggg?
Last modified 16/11/09 veo

Currently understood command-line options: -N {(name of joh) -o (stdout location)

Known issues:

1-always takes the last string as the name of the process to be run

Z2-only bash scripts are properly handled, other shell scripts will need trivial modifications

echo $% |%
awk '{nid=0; soid=0;

gtl="file "$NF; gtl | getline filetype;

split(filetype,fta);

for (i=1;i<NF;++1i) { if ($i=="-N") nid=i+1l; if ($i=="-0") soid=i+l; }

print "ts", (nid?"-L "$nid:""), (soid?"sh -c "\'"'":""){(fta[2]=="Bourne-Again"7"bash ":"")INF, (so
id?">"$SOid"l\' Ill:llll);}l | awk l{SuStem($0)}l

ISOTDAQ’13, Thessaloniki - V. E. Ozcan 26

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/

NOT REINVENTING THE WHEEL.

GNU Scientific Library (GSL) - www.gnu.org/software/gsl/
thread-safe numerical C library for many applied math topics
pros: no dependencies, extensive test suite, 1000+ functions

complex numbers, special functions, differential equations, FFT,
histograms, n-tuples, random distributions, linear algebra, root-finding,
minimization, least-squares fitting, physical constants,...

cons: many of these are done better/faster by specialized packages.

Ex: FFTW, Fastest Fourier Transform in the West - www.fftw.org

C library district Fourier transform, competitive even with commercial
codes. Threading support.

Ex: GMP, GNU Multi-PRecision library - gmplib.org
C library used in GCC, GNU Classpath, in Mathematica, Maple, SAGE...

Ex: Complex numbers are already in C99 standard. #include<complex.h>

ISOTDAQ’13, Thessaloniki - V. E. Ozcan 2

http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/
http://www.fftw.org
http://www.fftw.org
http://gmplib.org
http://gmplib.org

KNOWING YOUR REAL NEEDS

DN NPRIRGD o T e e —p———
2100 =
R =
Paleln) . \
| e e -t ’ '
7| = i JaxoDraw -
:!‘l“i [0 - "\ jaxodraw.sourceforge.net
QJSP - A ¢)
8 4] ¥ [—— — £
dou e Can export to postscript but also to latex
- B => uses axodraw latex package
Cwvemt Gweitony hame prshe Comvewt made LCER BaSal) -j

UNU.RAN, Universal Non-Uniform RANdom number generators - statistik.wu-
wien.ac.at/unuran

Pseudo-random number generation is the core of a good Monte Carlo generator.

Mersenne twister MT19937 has period of 2'°9%7-1. It is fast. It passes many of
the statistical tests, ex. DieHard tests. www.stat.fsu.edu/pub/diehard

Excellent for physics MC. Default generator in many modern libraries/languages,
like python.

But if you want to use it for encrypting your dafa, it is useless!!!

ISOTDAQ’13, Thessaloniki - V. E. Ozcan 28

http://statistik.wu-wien.ac.at/unuran/
http://statistik.wu-wien.ac.at/unuran/
http://statistik.wu-wien.ac.at/unuran/
http://statistik.wu-wien.ac.at/unuran/
http://www.stat.fsu.edu/pub/diehard
http://www.stat.fsu.edu/pub/diehard
http://jaxodraw.sourceforge.net
http://jaxodraw.sourceforge.net

OTHER FOSS PACKAGES

GNU R - www.r-project.org
"lingua franca among statisticians” - including people in finance, genetics

Interpreted programming language + software environment for statistical data
analysis and graphical representation

Java Analysis Studio - jas.freehep.org
Part of Freehep - JAVA based HEP & related software

GNU Octave - www.gnu.org/software/octave/

Open-source Matlab clone

GNU PSPP - www.gnu.org/software/pspp/

Open-source SPSS clone in the making

SAGE - www.sagemath.org

Open-source alternative to Maple, Mathematica, Matlab

An excellent list for more good stuff:

Andy Buckley's website www.insectnation.org/
howto/academic-software

ISOTDAQ’13, Thessaloniki - V. E. Ozcan 20

http://www.r-project.org
http://www.r-project.org
http://jas.freehep.org
http://jas.freehep.org
http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/
http://www.gnu.org/software/pspp/
http://www.gnu.org/software/pspp/
http://www.sagemath.org
http://www.sagemath.org
http://www.insectnation.org/howto/academic-software
http://www.insectnation.org/howto/academic-software
http://www.insectnation.org/howto/academic-software
http://www.insectnation.org/howto/academic-software

ROOT

Entries 20

Among other packages, one is 8 — o

(unfortunately?) almost unavoidable in . \ Underfow :

HEP: ROOT - root.cern.ch) \ % 1 ndf 0.3717/3

Constant 46.96 = 17.78

Covers everything needed for 5 MPV - 085930.2635
statistical data analysis in physical

\ Sigma 0.5267 = 0.1939

sciences: Graphing, fitting,
histogramming, multi-variate tools...

Has bindings/wrappers for many
outside libraries: GSL, UNU.RAN,
various MC programs, efc. 0

- N w
IIWIIIIIIII IIII|IIII|IIII|IIII|II

lll
1 2 3 4 5 6 7 8 9

o

Comes with a C++ interpreter for quick and DIRTY jobs.

Try its python interface: pyroot root.cern.ch/drupal/content/how-use-use-
python-pyroot-interpreter

Lecture by Dr. Cobanoglu this monday will have the defails.

ISOTDAQ’13, Thessaloniki - V. E. Ozcan 30

http://root.cern.ch
http://root.cern.ch
http://root.cern.ch/drupal/content/how-use-use-python-pyroot-interpreter
http://root.cern.ch/drupal/content/how-use-use-python-pyroot-interpreter
http://root.cern.ch/drupal/content/how-use-use-python-pyroot-interpreter
http://root.cern.ch/drupal/content/how-use-use-python-pyroot-interpreter
https://indico.cern.ch/getFile.py/access?sessionId=25&resId=0&materialId=0&confId=209985
https://indico.cern.ch/getFile.py/access?sessionId=25&resId=0&materialId=0&confId=209985

USING NEW SOFTWARE

Whenever you are supposed to start using a new software tool/package,
be PATIENT. Investment in the beginning, ALWAYS pays off.

Try fo install the package from scratch
Search the web for tutorial lectures and follow them
Try to run basic examples

Dont jump into implementing something complex - first outline a very
basic "project” for testing the package and your understanding of it.

After these make sense, then start complex coding.

For example, if you are supposed to learn Geant4, a simple project
would be shooting muons at a thin rectangular prism and seeing if the
lost energy fits a Landau distribution. If you are supposed to learn
ROOT, you could fill a histogram with randomly generated numbers and
do a fit to see if the generation agrees with extracted results.

ISOTDAQ’13, Thessaloniki - V. E. Ozcan 31

CLOSING ADVICE

Before doing any TDAQ programming, please make sure you know the following
concepts by heart:

Compiler, interpreter, terminal, representation of objects in a computers
memory, pointers, passing by reference, etc., ie. what is under the hood.

If you feel you are not comfortable with these concepts, have a look at the
excellent video lectures on the web.

Personal recommendation: Stanford CS107 lectures by J. Cain. It also
contains some more interesting stuff like functional programming.

Please think, then implement.

For a really smart solution for a tough programming problem, you can even
think for days before implementing. (Take the problem on the backburner, do
other things but brainstorm in the breaks.)

Consider reading “basic stuff” before bugging people you dont know (like on
mailing lists.)

Browse through readme files, use wikipedia, google, stack exchange, etc.

When you bug people, provide code snippets, software versions, efc.

ISOTDAQ’13, Thessaloniki - V. E. Ozcan 32

CONCLUSION

This “lecture” is full of starting points, it needs you to follow up...

It is full of stuff that will make your life easy. After you start using them, you
might get surprised how you lived without them before.

As an additional bonus, most of these things are cool stuff among nerds!
But there is no “free lunch”. They need a minimum amount of investment from you.
So pick some of the leads from this talk and start playing with them.

If you start testing them foday, you can get direct help from us!

Homework:

Download, compile and use ts. Try fo push the CPU utilisation of your n-core
machine to 100%.

Install git and start a repository, commit some stuff, look at the repo with gitk.

Run screen on a remote terminal, kill the connection, reconnect and continue from
where you left.

Do the exercise mentioned on slides "Final Code 2 & 3”.
Create a few fake .mp4 files and run the example command on slide "Swiss Army
Knife” up to one pipe (|) at a time to understand what it does,...

ISOTDAQ’13, Thessaloniki - V. E. Ozcan 33

gl -~ - oty O ~y «
‘.. ” PN e " g - e . = "
L - L4 _ h -‘. v ~ - b
oy s L N S 4 & S
-
/'0'
vl At
.
- =) N v 4 LN
-
Sy

AN EXAMPLE .BASHRC

Turn off clobbering Red Par.l.

Sety—C
Change default prompt FO“OWS -I-he
export PSl='\[\e]0;\w\a\]\[\e[32m\]\u@\h \[\e[35m\]\d \t \[\e[33m\]\w\[\e[Om\]\n\$ ' blCle Par'l'.

Don't put duplicate lines in the history

export HISTCONTROL="ignoredups"
function to run upon exit of shell

: £ ; :
Default to human readable figures unCtMN1—$Xlt() :
{ echo -e "Bye bye..:

alias df='df -h' G S
alias du='du -h' y

trap exit 0
Colorful commands - cmake.pl from the web

alias grep='grep --color’ # defining pushcd to use pushd instead of cd
alias 1ls='ls -G' function push cd
alias make='~/work/scripts/cmake.pl' { _
if [$# -ge 1]
: then
stop processes from command line S P e e e
alias stop='/bin/tcsh -c "stop \$argv"' if (dirs | awk '{exit ($1==$3)}') ; then
ssh through tor (very slow) pushd - > /dev/null
alias tor-ssh='ssh -C -o ProxyCommand="nc -X 4 -x localhost:9050 %$h %p"' else
popd > /dev/null 2>&l

alias cd='push cd' L

else
Mac 0OSX specific R Pl

%
alias ldd='otool -L' S 3
alias lyx='/Applications/LyX.app/Contents/MacOS/lyx' pushd $HOME >/dev/null
alias wget='curl -0' fi

ISOTDAQ’13, Thessaloniki - V. E. Ozcan 35

STILL WORKING?

Does our example code
still work in 20137

Yes, it compiles out of
the box (with all the
trl stuff) using gcc
4.7.1. Also with clang
(Apple/clang-421.0.60).

If we want to use the
C++11, we can make the
modifications we

foresaw, and compile
with:

g++ -std=c++l1

ISOTDAQ’13, Thessaloniki - V. E. Ozcan

// This code uses c++1ll features, compile with g++ =std=c++11
#include <iostream>

#include <string.h>

#include <unordered map>

using namespace std;

int main(int argc, char*argv([]){

-~

// Don't do anything if number of arguments != 1
if (argcl!=2) return 1;

// Using unordered map - should be scalable
// This would not work if string => char+* array
std: :unordered map< string, int > months;

31;
28; // have not considered leap years

months["january"]
months["february"]
months["march")

months["”
months["”
months["”
months["”
months["”
months["”
months["”
months["”
months["”

// not implemented

april”)

may"] =

june”] =
july”] =
august"”]
september
october"])
november")
december"”]

W i
hwwe

']

1;
0;

31:;
31:;

30;
= 3];

any catches for non-existing month names

cout << argv([l] << " has " << months[argv[1l]]
<< " days" << endl;
return 0;

}
| emm—

36

SURVIVING WINDOWS = CYGWIN

Unlike most of my colleagues, I am not against using Windows as
the OS of your development machine. However, IMHO, Windows is
ok only if you have installed Cygwin.

GNU Screen is not available in the package list, but you can find
It on the web.

A list of packages that I would immediately install in cygwin:
autoconf, automake, bash, binutils, emacs-X11, gcc (with g++, g77,
and possibly java), gecc4 (similar to gcc), gcc-mingw, git, make,
openssh, subversion, tefex, xterm, xz + all their dependencies

ROOT in cygwin: While on its official website, ROOT is "not
recommended” for use with cygwin gcc, I have used it for many
years and encountered no problems. If you do not want to set
up Visual Studio, I would recommend compiling ROOT in cygwin.

ISOTDAQ’13, Thessaloniki - V. E. Ozcan 37

http://www.cygwin.com/
http://www.cygwin.com/

// Written as an alternative solution to exercise 2.
// 9-10 February 2011 - updated 31 January 2012, veo

#include<stdio.h>

unsigned long iterfib(unsigned int num) {

// define our struct internally, so we don't block
// the word fibpair in the enduser's scope.
typedef struct { unsigned long val, prevval; } fibpair;

// cache the last call to us - speed things up only when
// the next call to iterfib() is with a higher number
static unsigned int lastnum = 1;

static fibpair lastfp = {1, 0};

// define our real workhorse as a nested function hidden
// from others - again not messing up the outside scope
// it is a recursive function that returns both the nth
// & (n=1)th Fibonacci number.

// note that nested functions in C are gcc extensions

fibpair itfib(unsigned int num) {

if (num == lastnum) return lastfp;
fibpair tmp = { 1, 0 };
if (num == 1) return tmp;

if (num == 0) { tmp.val = 0; return tmp; }
tmp = itfib(num-1);

unsigned long sum = tmp.val + tmp.prevval;
tmp.prevval = tmp.val;

tmp.val = sum;

return tmp;

}

fibpair tmp = itfib(num);

lastnum = num;

lastfp.val = tmp.val; lastfp.prevval = tmp.prevval;
return lastfp.val;

}

int main() {
unsigned int i = 0;
for (; 1<93; ++i)
printf("“%2ith Fib. number is
return 0;

}
ISOTDAQ’13, Thessaloniki - V. E. Ozcan

$1d\n",i,iterfib(i));

38

NERD TEST

A nerdy solution to
Francescos exercise 2.

Thanks to nested
function support from
gcc, we write a
fibonacci function, with
an iterative and cached
solution, but the
enduser does not see
any of the stuff in the
global scope except for
the interface function

itself.

https://indico.cern.ch/getFile.py/access?sessionId=9&resId=0&materialId=0&confId=209985
https://indico.cern.ch/getFile.py/access?sessionId=9&resId=0&materialId=0&confId=209985

NOTES & LICENSES

PS: I am aware of the small “problem” in the suffix()
function shown on slide number 4. :-)

The ts wrapper script on slide 26 is hereby licensed
under GPLv3. Everything else in this presentation
(including the images) is hereby released under Creative
Commons Attribution-ShareAlike 3.0, except for the logos
of various software & institutions and the screenshot
shown on slide 28, which has been taken from the
jaxodraw website - it has been reduced in resolution and
I believe its use like this falls under fair use conditions.

These lectures have been prepared for the ISOTDAQ
schools in Ankara, Rome, Cracow and Thessaloniki.

@00

ISOTDAQ’13, Thessaloniki - V. E. Ozcan 39

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

