

SPSC, 23 October 2012

Status and Results of the UA9 Crystal Collimation Experiment at CERN-SPS

Walter Scandale (CERN, LAL, INFN) for the UA9 collaboration

Outline

- Crystal collimation and the UA9 experiment
- □ UA9 layout in 2012
- □ UA9 results in 2012
- Toward the installation in LHC
- Conclusions

Crystal collimation concept

UA9 MISSION: investigate bent crystals as primary collimators in hadron colliders.

□ Mechanically bent crystal instead of amorphous primary deflector.

□ Particles are subjected to a coherent interaction (channeling):

- reduced loss rate close to the crystal
- reduced probability of diffractive events and ion fragmentation/dissociation
 BUT
- \blacklozenge small angular acceptance $2\times \mathcal{\theta}_c$ depending on the beam energy
- ◆ localization of the losses on a single absorber, thanks to large deflection angle

based collimation system for the LHC", EPAC 2006
Energy θ_c [μrad]

	120 GeV	18.26
$2U_{\rm max}$	270 GeV	7.30
$\theta_c = \sqrt{\frac{1}{E}}$	450 GeV	9.42
n angle	3.5 TeV	3.38
	7 TeV	2.39

Loss rate reduction in the crystal area

Reduction of the off-momentum halo population

□ excellent correlation with the losses observed at high-dispersion and at the crystal

□ 2÷6x reduction for protons (less than in crystal region)

□ 3÷10x reduction for Pb ions (equal to crystal region reduction)

Clearance between the crystal and the absorber

Loss maps

Loss maps are beam loss monitor rates registered along the accelerator.

Loss map measurement is not trivial in UA9:

- the SPS BLM system is optimized for high-intensity operation in pulsed mode
- UA9 operates at low intensity and low loss rate.

□ Loss map measurement in 2011:

- intensity increased from 1 bunch (I = 1.15×10^{11}) to 48 bunches,
- Clear reduction of the losses in the Sextant 6 next to the experiment

- ◆ total intensity: 3.3 x 10¹³, 4 x 72 bunches with 25 ns spacing
- Loss reduction in the entire ring (in the reliable BLMs)

Halo profile "far from the crystal"

Toward installation in LHC

In September 2011, a letter of intents was presented to the LHCC, asking to extend UA9 to the LHC:

- new experiment (LUA9) recommended by the LHCC and accepted by the accelerator directorate
- ♦ goals:
 - demonstrate the extraction of the beam halo in the LHC
 - measure the possible improvements with respect to standard collimation
- the UA9 Collaboration together with the LHC collimation team (leader S. Redaelli) will conduct the test.

Toward LHC: layout

H & V crystals

Layout of the LUA9 experiment

- only one beam (beam 1)
- two crystal (horizontal and vertical)
- two detector stations (horizontal and vertical)
 - Mini-Roman pot with a segmented detector
 - Cherencov detector in vacuum
- ♦ initially/later:
 - o test at steady/ramping energy
 - o standard collimation system in-place/retracted

Crystal located close to the primary collimators (see arrow):

extracted beam absorbed by a secondary collimator

highest radiation area, tight space allowance

Toward LHC: R&D for a goniometer

 \Box Acceptance for channeling defined by the critical angle $\theta_c = \sqrt{2U_0/E} = 2.4 \mu rad$ (7TeV)

Goniometer accuracy must be smaller than angular acceptance:

Possible solutions

- mechanical goniometer à la "SPS (IHEP, Russia)" has resolution < 10 urad</p>
- mechanical device developed by industrial partner CINEL for the SPS:
 - static resolution and accuracy meet the LHC specifications
 - test on going to assess accuracy in dynamic regime
- piezoelectric device under development in collaboration with industrial partner ATTOCUBE.

M1: Angular deflection (144 mm stroke) M2: Angular and linear displacement (88 mm stroke) M1 & M2: Linear displacement

CINEL goniometer for the SPS

ad)

Ē

0

	M1 test - M2 at rest	M2 test - M1 at rest
Repeatability	0.22 µrad	0.96 µrad
Backlash	0.11 µrad	0.68 µrad
Resolution (10 steps)	Average = 0.998 μrad Std Dev = 0.078 μrad	Average = 0.978 µrad Std Dev = 0.185 µrad
Dynamical overshoot	LHC Motor	500%
	Nanotec Motor	200%

Electron cloud?

□ In order to register loss maps:

total intensity: 3.3 x 10¹³,
4 x 72 bunches with 25 ns spacing

- During the initial alignment of the crystals with the beam, unusual local loss patterns observed, most probably due to electron cloud formation:
 - Iosses well correlated with crystal transversal position
 - losses extremely correlated with vacuum pressure
 - ♦ 50 cm aluminum bar in the goniometer

□ To check the nature of the effect

- solenoid installed around goniometer tank
- mitigation of the e-cloud effect observed

Coating of the LHC tank required

Crystal damage

□ Radiation resistance:

- ♦ IHEP U-70 (Biryukov et al, NIMB 234, 23-30): 70 GeV protons, 50 ms bunch of 10¹⁴ p every 9.6 s, several minutes irradiation, channeling efficiency unchanged
- NA48 (Biino et al, CERN-SL-96-30-EA): 450 GeV protons, 2.4 s spill of 5 x 10¹² p every 14.4 s, one year irradiation, channeling efficiency reduced by 30%
- ◆ LHC: 7 TeV protons, 3 x 10¹⁴ p per fill
- ♦ test HRMT16-UA9CRY under approval at HiRadMat facility:
 - 440 GeV protons, max 288 bunches, 1.7 x 10¹¹ protons per bunch
 - intensity comparable with worst accident scenario in LHC (asynchronous beam dump)
 - Simulation with only beam energy and silicon heat capacity): $\Delta T = 5$ K per bunch, T_{melting} after ~ 280 bunches

Summary of the UA9 findings

□ Test with extracted beams at CERN North Area (~ 3÷5 weeks per year):

- Crystal beam interactions
- Measurement of crystal properties before installation in CERN-SPS

□ Prototype crystal collimation system installed in CERN-SPS (~ 5 days per year):

- ◆ 2009 → First results on the SPS beam collimation with bent crystals (Physics Letters B, vol. 692, no. 2, pp. 78–82).
- ◆ 2010→ Comparative results on collimation of the SPS beam of protons and Pb ions with bent crystals (Physics Letters B, vol. 703, no. 5, pp. 547–551).
- ◆ 2011 → Direct measurement of a strong reduction of the off-momentum halo in crystal assisted collimation of the SPS beam (Physics Letters B, 714(2-5), 231–236).
- ◆ 2012→ Direct observation of the halo population reduction far from the crystal, SPS loss maps, optimized apertures for collimation system elements, ... (data taking still on-going)

□ Working for future installation of a prototype system in LHC

- ◆ 2006→ First of a crystal-assisted collimation layout (Assmann, Redaelli, Scandale EPAC2006).
- ◆ 2008→ Medipix in a Roman pot
- \bullet 2009 \rightarrow Cherencov quartz detector in the primary vacuum
- ◆ 2011→ Letter of Intent (CERN-LHCC-2011-007 / LHCC-I-019 10/06/2011)
- ♦ 2012 \rightarrow First goniometer industrially produced suited for the LHC requirements.

Conclusion

The UA9 experiment is studying the possibility to use crystals as primary obstacle in collimation systems.

- Test beam measurements demonstrate the possibility to efficiently deflect particles at high angles using bent crystals.
- ♦ Using a prototype crystal collimation system in the CERN-SPS:
 - collimation of the beam reliably obtained for proton and lead ion beams
 - losses in the collimation system and in the closest high dispersion area reduced when using a crystal target instead of an amorphous one
 - new measurements to estimate loss reduction in the whole accelerator ring and to optimize the parameters of the system
- The team is preparing the installation of a minimal crystal collimation system in the LHC.

```
UA9 request for 2013
```

We ask the SPSC to support our request of a 24 h shift in the SPS with Pb-ions to test the CINEL gonimeter with beam

Publications & Acknowledgments

1. W. Scandale et al., Strong reduction of the off-momentum halo in crystal assisted collimation of the SPS beam. Phys. Lett. B, 714 (2012), 231–236.

The EN/STI group at CERN is providing extraordinary support to UA9. The BE/OP-BI-RF groups carefully prepare the SPS to allow for our measurements.

We specially thank our funding agencies, reference Committees and Referees.