NA61/SHINE: Status, Results and Plans (October 2011 - October 2012)

M. Unger* for the NA61/SHINE Collaboration
*Karlsruher Institut für Technologie

Data Taking: Nucleus-Nucleus Interactions

- ${ }^{7} \mathrm{Be}+{ }^{9} \mathrm{Be}$ production runs at $40 A, 75 A$ and $150 \mathrm{~A} \mathrm{GeV} / \mathrm{c}$
- ${ }^{7} \mathrm{Be}+{ }^{9} \mathrm{Be}$ test runs at $13 \mathrm{~A} \mathrm{GeV} / \mathrm{c}$
- $\mathrm{Pb}+\mathrm{Pb}$ test runs at $80 A \mathrm{GeV} / \mathrm{c}$

Data Taking: Nucleus-Nucleus Interactions

CERN COURIER

Apr 27, 2012
Light work with heavy ions
H. Stroebele \& I. Efthymiopoulos
uncorrected distribution, less than 1\% of total statistics:

Data Taking: Hadron-Nucleus Interactions

- $\mathrm{p}+\mathrm{Pb}$ production runs at $158 \mathrm{GeV} / \mathrm{c}$ - unique reference data for heavy ion physics
- $\mathrm{p}+\mathrm{C}$ test runs at $120 \mathrm{GeV} / \mathrm{c}$ for US ν-program
- h^{-} / K^{-}test runs at $158 \mathrm{GeV} / \mathrm{c}$ for cosmic ray interactions

Data Taking: Hadron-Nucleus Interactions

Problems with VTX1/2 magnets

at startup:

- electronics upgrade by CRIO group
- damage of He pump in VTX1
- water in VTX2 electronics

\rightarrow magnets were ready to use only at 3rd of July

during data taking:

- vacuum leak on thermal screen of VTX1
- ramp down and warm up
- fix leak, cool down, ramp up
\rightarrow VTX1 not available between 19th July - 15th September
shift of LS1 \rightarrow part of lost $p+\mathrm{Pb}$ recovered, $\mathrm{Be}+\mathrm{Be}$ in Dec-Feb 2012/13

Data Taking: Hadron-Nucleus Interactions

 Low Momentum Particle Detector (LMPD):
Measurement of event-centrality via counting of 'grey protons‘

LMPD installation around Pb target (inside Tedlar ${ }^{\circledR} \mathrm{He}$-tube)

Detector Upgrades

transverse acceptance extended in 2012 (needed for low energy runs)

current upgrades:

- TOF HV
- TPC calibration pulser
- TPC gas monitoring

under consideration:

readout upgrade during LS1 for

- TOF
- BPD
- beam counters
- PSD
using DRS chip from PSI
($=5 \mathrm{GHz}$ waveform digitizer)

Software Development

 persistent bi-directional trees:CernVM
Software Appliance

- successful port of legacy software to VM
- production infrastructure ready by end of 2012

- development of new SHINE Offline framework ongoing
- first native applications (PSD and LMPD reconstruction)
- new ROOT DSTs used in lines of code (C++ only):
 data analysis

Calibration

Krypton spectrum in MTPC-R:

Status:

- 2009 data sets fully calibrated (minor improvements pending)
- preliminary calibration of 2010/11 data sets
- TPC pad gains from Krypton decay (10^{6} events per chamber collected in 2010/12)
- PSD calibration with
- $100 \mathrm{GeV} / \mathrm{c} \mu$ - beam
- $158 \mathrm{GeV} / \mathrm{c}$ proton beam and tests at T10 PS beam line

mean rec. $E_{\text {proton }}$ per module:

Results

Published/Submitted:

- Pion emission from the T2K replica target: Method, results and application, submitted to Nucl. Instrum. Meth. A. [2007 data]
- Measurement of Production Properties of Positively Charged Kaons in p+C Interactions at 31 GeV/c, Phys.Rev. C85 (2012) 35210. [2007 data]
- Measurements of Cross Sections and Charged Pion Spectra in p+C Interactions at 31 GeV/c, Phys.Rev. C84 (2011) 34604. [2007 data]

In preparation:

- NA61 detector and beam
- K_{S}^{0} and Λ in $p+C$ at $31 \mathrm{GeV} / \mathrm{c}$ [2007 data]
- π^{-}spectra from $p+p$ scan via h^{-}method [2009 data]

Preliminary data releases:

- $\pi^{-}+\mathrm{C}$ runs for cosmic ray experiments [2009 data]
- p+C runs for T2K [2007/9 data]
- $p+p$ energy scan for heavy ion physics [2009 data]

NA61 Measurements for Cosmic Ray Experiments

Air shower measurements at ultrahigh energies

cosmic ray flux

improve understanding of low energy part of air showers using particle production data at SPS energies!
astrophysics

particle physics beyond LHC

Muons in UHE Air Showers

energy of last interaction before decay to μ
air shower \rightarrow hadron + air $\rightarrow \pi / K+X$

Low energy air shower:

$$
\mu+\nu_{\mu}
$$

e.g. KASCADE:

- $E_{0}=10^{15} \mathrm{eV}$
- $r=40-200 \mathrm{~m}$
- $E_{\mu} \geq 250 \mathrm{MeV}$

Muons in UHE Air Showers

energy of last interaction before decay to μ air shower \rightarrow hadron + air $\rightarrow \pi / K+X$

High energy air shower:

Muons in UHE Air Showers

Muon production at fixed energy of grand-mother particle

KASCADE:

- boxes: air shower
- red area: NA61 acceptance
- $E_{\text {grand }}=158 \mathrm{GeV}$

Auger:

NA61 Measurements for Cosmic Ray Experiments

Production Cross Section in $\pi^{-}+C$ Interactions

- using NA61 beam counters, veto scintillators, GAP-TPC
- correction for lost interactions, $\sigma_{\text {ela }}, \sigma_{\text {qela }}$ (model dependent)

Charged Hadron Production in $\pi^{-}+\mathrm{C}$ at $158 \mathrm{GeV} / \mathrm{c}$

$p=0.6 \ldots 121 \mathrm{GeV} / \mathrm{c}$ in steps of $\lg p /(\mathrm{GeV} / c)=0.08$

Charged Hadron Production in $\pi^{-}+\mathrm{C}$ at $350 \mathrm{GeV} / \mathrm{c}$

$p=0.6 \ldots 121 \mathrm{GeV} / \mathrm{c}$ in steps of $\lg p /(\mathrm{GeV} / c)=0.08$

Comparison to Hadronic Interaction Models

QGSJetll-03

Sibyll2.1

UrQMD1.3.1_patched

EPOS1.99

colors: data/MC, dark red: ≥ 2, dark blue: ≤ 0.3

NA61 Measurements for T2K

|빕 Selected for a Viewpoint in Physics PHYSICAL REVIEW LETTERS

Indication of Electron Neutrino Appearance from an Accelerator-Produced Off-Axis Muon Neutrino Beam

K. Abe, ${ }^{49}$ N. Abgrall, ${ }^{16}$ Y. Ajima, ${ }^{18, \dagger}$ H. Aihara, ${ }^{48}$ J. B. Albert, ${ }^{13}$ C. Andreopoulos, ${ }^{47}$ B. Andrieu, ${ }^{37}$ S. Aoki, ${ }^{27}$

We compute the neutrino beam fluxes (Fig. 1) starting from models and tuning them to experimental data. Pion production in (p, θ) bins is based on the NA61 measurements [21], typically with $5 \%-10 \%$ uncertainties. Pions nmodirsad sitaida tha avmarimantallvr manomand nhana

FIG. 1. Predicted neutrino fluxes at the far detector, in absence of oscillations. The shaded boxes indicate the total systematic uncertainties for each energy bin.

NA61 Measurements for T2K

First complete example of application of long-target data for neutrino flux predictions!
thin target $\left(I=2 \mathrm{~cm}, \lambda_{\text {int }} \sim 0.03\right)$

replica target ($I=90 \mathrm{~cm}, \lambda_{\text {int }} \sim 1.9$)

re-weighted ν_{μ}-flux sim. at T2K far detector

CERN-PH-EP-2012-188, arXiv:1207.2114 [hep-ex], submitted to NIM

NA61 Measurements for T2K

K_{s}^{0} from $m\left(\pi^{+}, \pi^{-}\right)$

2007 data, $\mathrm{p}+\mathrm{C}$ at $31 \mathrm{GeV} / \mathrm{c}$

proton production spectra:

Λ from $m\left(p, \pi^{-}\right)$

NA61 Measurements for T2K

ongoing analysis of 2009 thin target data

- factor 10 more statistics as 2007 data set
- simultaneous extraction of $\pi^{ \pm}, K^{ \pm}, p, \bar{p}$ (only $\pi^{ \pm}, K^{+}$and p with 2007 data)

raw particle yields - release of corrected spectra end 2012

NA61 Heavy Ion Program

Study of the onset of deconfinement and search for the critical point of strongly interacting matter
previous data:

NA61 scan of system size and energy:

π^{-}from h^{-}results, $p+p$ at $158 \mathrm{GeV} / \mathrm{c}$ (2009 data)
m_{T} spectra at mid-rapidity

(NA49 Pb+Pb)/(NA61 p+p)

significant shape-difference wrt. $\mathrm{Pb}+\mathrm{Pb}$, independent of energy.
π^{-}from h^{-}results, $p+p$ at $158 \mathrm{GeV} / \mathrm{c}$ (2009 data)
m_{T}-integrated π^{-}-spectra

comparison to prev. $p+p, \mathrm{~Pb}+\mathrm{Pb}$

- large y-acceptance, small syst. and stat.
- precision (still to be improved) already sufficient for study of onset of deconfinement

Results using PID, $p+p$ at $158 \mathrm{GeV} / \mathrm{c}$ (2009 data)

- event-by-event 'particle counting' using $d E / d x$ fits (identity method)
- \rightarrow unfolded moments (mean, variance, ...)

Multiplicity fluctuations in $p+p$ interactions (prel.)

- scaled variance:
- for Poisson: $\omega_{i}=1$

Data Taking Plan

Schedule as of 2011:

Beam Primary	Beam Secondary	Target	Energy (AGeV)	Year	Days	Physics
Pb			13, 20, 30			
	${ }^{7} \mathrm{Be}$	Be	13, 20, 30	2012/2013	14/28 days	CP, OD
Ar		Ca	13, 20, 30, 40, 80, 158	2014	6×8 days	CP, OD
p	p	Pb	$\begin{array}{r} 400 \\ 13,20,30,40,80,158 \end{array}$	2014	6×7 days	CP, OD
p	p	Pb	$\begin{array}{r} 400 \\ 158 \\ \hline \end{array}$	2014 ?	30? days	High p_{T}
Xe		La	13, 20, 30, 40, 80, 158	2015	6×8 days	CP, OD

- highest physics priority for Ar beams
- further delays seriously endanger success of heavy ion program
- keep ahead of competition from RHIC (Au+Au energy scan in 2015-2017, 'BES phase II')

Summary and Outlook

NA61 activities Oct. 2011 - Oct. 2012

- $\mathrm{Be}+\mathrm{Be}$ and $\mathrm{p}+\mathrm{Pb}$ data taking
- publications using 2007 data
- prel. release of results with 2009 data, (CERN-SPSC-2012-022) publications in preparation

Next important step

- proceed with heavy ion program

Extend NA61 physics program?

- hadro-production measurements
- US ν-program
- LAGUNA-LBNO
- $\mathrm{Pb}+\mathrm{Pb}$ energy scan

- open charm in high stat. $\mathrm{Pb}+\mathrm{Pb}$ with new vertex-detector

. . . additional slides . . .

Detector components and layout

NA49 detector (1994 - 2002) used after some upgrades and enhancements (marked red)

SPS secondary particle beam

Different energies and secondary particles or spallation products from ion beams possible

NA61 Calibration Procedure

- T0-offset corrections: pad by pad, TPC by TPC corrections
- T0 calibration: - scale calibration based on TOF-L geometry (TPC-TOF alignment)
- BPD geometry: residual corrections to the survey geometry
- Vdrift smoothing: smoothing of the measured Vdrift using p, T, HV measurements
- Vdrift scaling: based on alignment
- Vdrift(t) calibration: time dependent residual corrections base on bottom position
- GTPC Vdrift: based on alignment
- TPC geometry: corrections to the survey TPCs+GTPC geom
- BPD-TPC geometry/alignment: reference BPD positions
- res. corrections to TPC points: points positions corrections based on standard tracking procedure
- magnetic field: using Λ, K_{0} invariant mass distributions
- dE/dx calibration: using truncated mean for the cluster charge including various detector effects
- TOF-L/R: data based geometry and time corrections
- TOF-F: data based geometry and time corrections

LMPD particle identification

Particles stopped in 2nd absorber

four absorber layers, dynamic range $\approx 75 \mathrm{MeV} / \mathrm{c}$ to $300 \mathrm{MeV} / \mathrm{c}$

Cross Section Measurements with NA61

Schematic of Beam Line:

Analysis of $\pi^{-}+\mathrm{C}$ data

- currently: charged hadrons (no PID)
- tracks from main vertex
- correct for
- feed-down
- secondary interaction
- track loss
using MC, but no correction $h^{-} \rightarrow \pi^{-}$
- fiducial ϕ cuts for geometrical acceptance
- zero-bias data set (beam trigger) to correct min-bias data

Analysis of $\pi^{-}+\mathrm{C}$ data

define geometrical acceptance: accept only tracks in Φ-bins with $\geq 90 \%$ efficiency.
example: positive tracks

$\pi^{-}+\mathrm{C}$ Correction and Uncertainties

MC correction factor

model systematics [\%]

total systematics [\%]

(example: $\mathrm{h}^{-}, 158 \mathrm{GeV} / \mathrm{c}$)

- $e^{ \pm}$contamination at low p, p_{T}
- model systematics from Δ (VENUS/EPOS) of individual contributions
- total systematics: model correction, normalization, trigger bias, calibration, track topology

$\pi^{-}+\mathrm{C}$ Correction and Uncertainties

model systematics [\%]

total systematics [\%]

(example: $\mathrm{h}^{-}, 158 \mathrm{GeV} / \mathrm{c}$)

- $e^{ \pm}$contamination at low p, p_{T}
- model systematics from Δ (VENUS/EPOS) of individual contributions
- total systematics: model correction, normalization, trigger bias, calibration, track topology

$$
\text { require }|C-1|<0.2 \text { and sys.tot. }<20 \%
$$

Comparison of $\pi+C$ results to FLUKA2011

 approval by FLUKA collaboration pending
colors: data/MC, dark red: ≥ 2, dark blue: ≤ 0.3

Analysis of 2007 data ($\mathrm{p}+\mathrm{C}$ at $31 \mathrm{GeV} / \mathrm{c}$)

three independent analyses:

- negative hadrons (model corr.)
- dE/dx-only at low p
- $\mathrm{dE} / \mathrm{dx}$ and TOF at medium p spectrum corrections
- acceptance $\geq 99 \%$
- reconstruction efficiency $\geq 96 \%$
- pion decay $\leq 10 \%$
- feed-down $\leq 10 \%$

FLUKA2009 prediction of p+C $(158 \mathrm{GeV}) /(31 \mathrm{GeV})$

Muons in UHE Air Showers

Number of muons depends on energy fraction of produced hadrons

- $\pi^{0} \rightarrow$ electromagnetic shower
- $\pi^{ \pm}$
- $\left.\rho^{0} \rightarrow \pi^{+} \pi^{-}\right\} \rightarrow$ hadronic shower
- (anti-) baryons

T. Pierog, Proc. ICRC09

