

### **Quarkonium Production at LHCb**

### Monica Pepe Altarelli, CERN On behalf of the LHCb collaboration LHCP2013, Barcelona



### **Motivation**

- Heavy quarkonium states are particularly interesting systems to test our understanding of strong interactions, both at perturbative and non-perturbative level
- Many papers about theory and experiments
  - LHCb paper on J/ $\psi$  production at 7 TeV is one of the most cited ones, just behind searches for  $B_s \rightarrow \mu\mu$  and CPV in charm!



# Models for heavy-quarkonium production

- Colour Singlet (CS) Model
  - Quarkonia are produced as observable colour-neutral  $Q\overline{Q}$  pairs
  - Poor description of production rates at high  $p_T$  (LO predicts too fast a decrease in  $p_T$ :  $\approx p_T^{-8}$ )
  - Very large corrections at NLO and NNLO<sup>\*</sup> (subset of NNLO) raise substantially the cross-sections at large  $p_T$  (≈  $p_T^{-6}$ ,  $p_T^{-4}$ ) bringing them closer to the data
- NRQCD (non relativistic QCD) formalism
  - Factorizes the short distance coefficients (calculated perturbatively as expansions in  $\alpha_s$ ) from longdistance matrix elements (assumed to be process independent) to be extracted from data  $\rightarrow$ predictive power
  - Includes CS and Colour Octet (CO) amplitudes
  - Good description of data on cross-sections, while description of data on polarisation is still confused
- FONLL (Fixed Order Next to Leading Log) formalism
  - Describes quarkonium production from *b*-hadron decays
  - Combines Fixed Order Calculation (FO) with all order resummation of Leading and NL Logs (NLL)



### Selected LHCb experimental results

- Production of
  - J/ $\psi$  and Y(nS)
  - $-\psi(2s)$
  - Double J/ $\psi$
  - Exclusive J/ $\psi$ ,  $\psi$ (2s)
  - J/ $\psi$  in pA/Ap collisions

## $J/\psi$ and Y(nS) production at Vs=8 TeV

 $\frac{d^2\sigma}{dydp_{\rm T}}(pp \rightarrow VX) = \frac{N(V \rightarrow \mu^+\mu^-)}{L \times \varepsilon \times BR(V \rightarrow \mu^+\mu^-) \times \Delta y \times \Delta p_{\rm T}}$ 

- Double differential in  $p_{T}$  and y
- In the range
  - $0 < p_T < 14 \text{ GeV/c for the J/}\psi, 2.0 < y < 4.5$
  - $0 < p_T < 15$  GeV/c for the Y(nS), 2.0<y<4.5
- Prompt J/ $\psi$  and J/ $\psi$  from *b* separated by
- Signal extraction
  - J/ $\psi$ : two-dimensional fit to  $m_{\mu\mu}$  and  $t_z$  in each ( $p_T$ ,y) bin
  - $\Upsilon$ (nS): fit to  $m_{\mu\mu}$  in each ( $p_T, y$ ) bin
- Results shown under assumption of zero polarisation







### J/ $\psi$ and Y(nS) production at Vs=8 TeV



Monica Pepe Altarelli, LHCP 2013



## Results: J/ $\psi$ cross-section





### Comparison with theory, prompt J/ $\psi$



- **Prompt**: J/ $\psi$  produced at the interaction point plus feed-down from heavier charmonium • (e.g. ~20% from  $X_C \rightarrow J/\psi\gamma$  and ~8% from  $\psi(2s) \rightarrow J/\psi\pi\pi$ )
- Feed-down not included in theory (Direct) •
- Allowing for this, both NNLO\* CSM and NRQCD provide reasonable description of • the experimental data

# arXiv:1304.6988 Comparison with theory, J/ $\psi$ from b

HCh





### Results: Y(ns) cross-sections





### Comparison with theory



NNLO\* CSM Artoisenet, Campbell, Lansberg, Maltoni, Tramontano NLO CSM Campbell, Maltoni, Tramontano

- e.g. ~20% feed-down from X<sub>b</sub>(1P)→Y(1S)γ not included in the theory
- NNLO\* calculations provide a reasonable description of the data





## $\psi(2S)$ production at 7 TeV

- $\psi(2s) \rightarrow \mu^+ \mu^-, \psi(2s) \rightarrow J/\psi \pi^+ \pi^-$  results are combined
- Prompt  $\psi(2s)$  and  $\psi(2s)$  from b
- No significant feed-down from excited charmonium states  $\rightarrow$ simpler comparison with models



#### LHCh **Double J/** $\psi$ production at 7 TeV

- As charmonium production cross-sections are large, the question of multiple production naturally arises
- How to get double J/ $\psi$  production? lacksquare
  - gg $\rightarrow$ J/ $\psi$  J/ $\psi$  LO  $\alpha_s^4$  PQCD  $\rightarrow$  ~4 nb in LHCb acceptance
- LHCb result  $\sigma_{J/\psi J/\psi}=5.1\pm1.0\pm1.1$  nb •



- Double Parton Scattering  $\rightarrow$  ~4 nb in LHCb acceptance
- Also measured J/ $\psi$ D<sup>0</sup>, J/ $\psi$ D<sup>+</sup>, J/ $\psi$ D<sub>s</sub>, J/ $\psi$ A<sub>c</sub> ..... •

С

JHEP06 (2012) 141

# Exclusive J/ $\psi$ , $\psi$ (2s) production



• Cross section x branching ratio (2010 data sample of 36 pb<sup>-1</sup>)  $\sigma_{pp \to J/\psi (\to \mu^+ \mu^-)} (2.0 < \eta_{\mu^{\pm}} < 4.5) = 307 \pm 21 \pm 36 \text{ pb},$ 

 $\sigma_{pp \to \psi(2S)(\to \mu^+ \mu^-)} (2.0 < \eta_{\mu^\pm} < 4.5) = 7.8 \pm 1.3 \pm 1.0 \text{ pb},$ 

J.Phys.G 40(2013)045001

- Measured cross sections are consistent with theoretical predictions (L. Motyka & G. Watt, W. Shafer & A. Szczurek, SuperChic, Starlight)
- New trigger implemented to increase rate of exclusive events (*e.g.* use of upstream silicon sensors to veto backwards activity, soft p<sub>T</sub> cuts for hadronic final states) ~ 1.4 fb<sup>-1</sup> already collected and being analysed
  - − Study charmonium decaying into two and four-body final states (*e.g.*  $\chi_{c0}$ →K<sup>+</sup>K<sup>-,</sup> p<sup>+</sup>p<sup>-</sup>) to complement di-muon studies
  - Spectroscopy, etc



- Rapidity coverage 1.5<y<4.0 (pA) -5<y<-2.5 (Ap)
- Integrated luminosity ~2/nb

Monica Pepe Altarelli, LHCP 2013

# $J/\psi$ production in pA/Ap collisions



Arleo & Peigne

- J/ $\psi$  production less suppressed in backward region
- Good agreement with theoretical model



### Conclusions

- A wealth of measurements on quarkonium production performed by LHCb (and more coming)
- These results allow an in depth comparison with theoretical models
- A simple CSM is disfavoured by the data, while a combination of CS and CO, as implemented in the NRQCD model, or CS improved by QCD corrections (NNLO\*) are more successful
- Many new ongoing studies (*e.g.* exclusive production, double quarkonium production, in plead collisions)







# $\chi_{\text{C}}$ production at 7 TeV

- Ratio  $\sigma(\chi_{C1})/\sigma(\chi_{C2})$  sensitive to CS vs CO models
- $\chi_{CJ} \rightarrow J/\psi(\mu\mu)\gamma$ 
  - Photons reconstructed in calorimeters  $\rightarrow$  signal peaks cannot be resolved( $\Delta$ M=45 MeV)
  - − Photons converted before magnet, use e<sup>+</sup> e<sup>-</sup> tracks → gain resolution;  $\chi_{C1}$ ,  $\chi_{C2}$  can be resolved but efficiency is lower
  - Analysis of full 2011 data sample (1 fb<sup>-1</sup>) based on converted photons completed and under review (not yet public) ~20% χ<sub>c</sub> feed-down contribution

