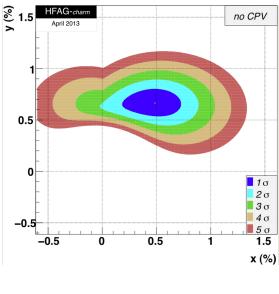

Charm mixing and **CP** violation in LHCb LHCD

Tomáš Pilař

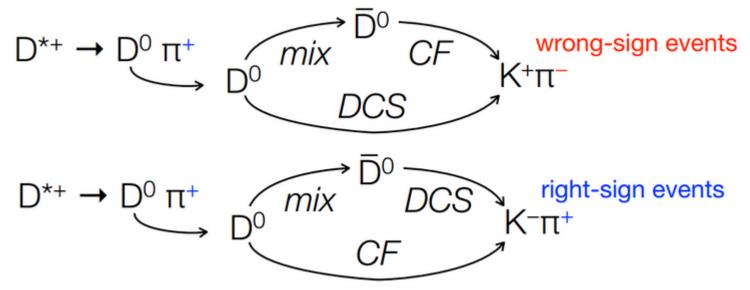
on behalf of the LHCb Collaboration

THE UNIVERSITY OF WARWICK


The LHCb Detector

Charm mixing

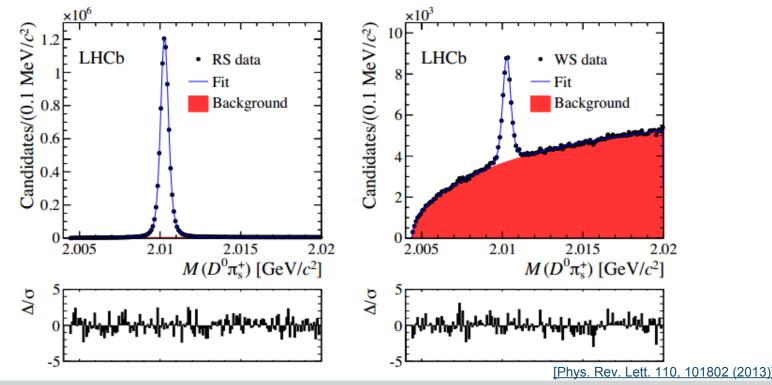
- Well established in the SM [K, B and D sectors]
- Mixing expected to be small $x \sim y \sim O(1\%)$
- Previous evidence from many results


[HFAG arXiv:1207.1158 [hep-ex]]

Parametrized dimensionlessly: $x = \frac{m_2 - m_1}{\Gamma}$, $y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma}$, $\Gamma = \frac{\Gamma_1 + \Gamma_2}{2}$

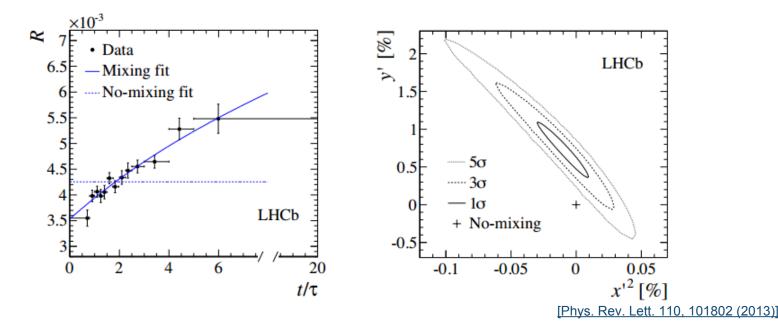
- First evidence of mixing in D sector from BaBar, Belle and CDF [Phys.Rev.Lett. 98 (2007) 211802, Phys.Rev.Lett. 98 (2007) 211803, Phys. Rev. Lett. 100 (2008) 121802]
- Use CF and DCS decays to same final state:
 - Right-sign(RS) : CF decays only
 - Wrong-sign(WS) : DCS decays and mixing + CF decays

Charm mixing


If we assume no CPV and mixing to be small, we can take a ratio of RS to WS

$$R(t) = \frac{N_{WS}(t)}{N_{RS}(t)} = R_D + \sqrt{R_D}y't + \frac{x'^2 + y'^2}{4}t^2 \quad \begin{cases} x' = x\cos\delta + y\sin\delta\\ y' = y\cos\delta - x\sin\delta \end{cases}$$

N.B. The mixing parameters are transformed with the strong phase between the CF and DCS amplitudes


Charm mixing in D⁰→ Kπ decays

- Dataset consists of 1 fb⁻¹ of data collected by LHCb in 2011
- Prompts charm events: $D^{*+} \rightarrow (D^0 \rightarrow K^{\mp} \pi^{\pm}) \pi^+_{soft}$
- Soft pion acting as a tag on the flavour of D⁰

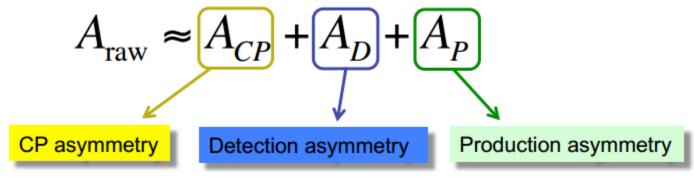
Charm mixing in $D^0 \rightarrow K\pi$ decays

- Two non-trivial backgrounds that could bias the measurement:
 - Secondary component misidentified as prompt (2.7%)
 - Peaking mis-reconstructed D^0 candidates (0.4%)
- Measurement resolution is found to be dominated by statistical error

Charm mixing

$$x' = (0.9 \pm 1.3) \times 10^{-4}$$
, $y' = (7.2 \pm 2.4) \times 10^{-3}$
 $R_D = (3.52 \pm 0.15) \times 10^{-3}$

- Observation of neutral charm mixing
- Excludes no-mixing hypothesis with a significance of 9.1σ
- Recent result from CDF with a 6.1σ observation [Paolo Maestro's slides from Beauty 2013]
- Both are one-experiment observations of charm mixing!


NB. Remember R_{D} is the ratio of wrong-sign to right-sign events.

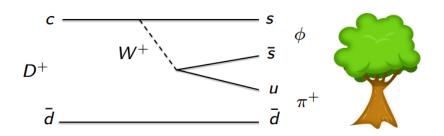
CP Violation in SCS decays

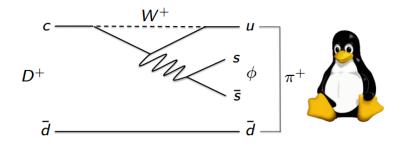
- Single-Cabbibo-Suppressed decays allows for interference between tree and penguin diagrams >>> sensitive to CP violation
- CP violation is expected to be small (only up to $\sim O(10^{-3})$ in SM)
- Direct CP violation can be measured by CP asymmetry:

$$A_{CP} = \frac{\Gamma(D \to f) - \Gamma(\bar{D} \to \bar{f})}{\Gamma(D \to f) + \Gamma(\bar{D} \to \bar{f})}$$

 Detected 'raw' asymmetry however includes production and detection asymmetries

[[]Jeroen's slides at LHCP 2013]


[Phys. Rev. D75:036008, 2007]


CP Violation in $D^{+}\phi\pi^{+}$ and $D^{+}K_{s}\pi^{+}$

To solve this, one can compare two similar channels and extract a difference in CP asymmetries

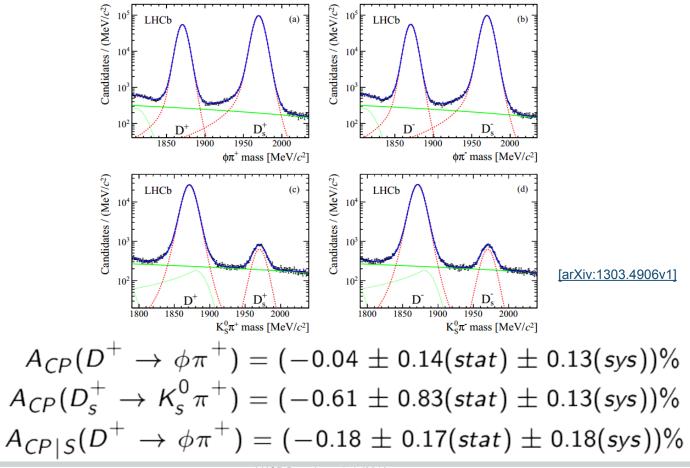
 $\Delta A_{CP} = A_{CP}(D \rightarrow f_1) - A_{CP}(D \rightarrow f_2) \approx A_{raw}(D \rightarrow f_1) - A_{raw}(D \rightarrow f_2)$

- Detection and production asymmetries cancel to first order
- Channel advantages:
 - High BF (2.65 x 10⁻³)
 - Quasi-two body (\$\phi\$ dominates narrow region of Dalitz space)
- Theoretical predictions challenging (V -> PS)

CP Violation in D⁺, $\phi \pi^+$ and D⁺, $K_s \pi^+$

• Define the A_{CP} as the difference in asymmetries of K_s and ϕ channels

$$A_{CP} = A_{raw}(D^+ \to \phi \pi^+) - A_{raw}(D^+ \to K_s^0 \pi^+) + A_{CP}\left(\frac{K^0}{\bar{K}^0}\right)$$


• Similarly can extract A_{CP} from D_s candidates $A_{CP} = A_{raw}(D_s^+ \to K_s^0 \pi^+) - A_{raw}(D_s^+ \to \phi \pi^+) - A_{CP}\left(\frac{\kappa^0}{\bar{\kappa}^0}\right)$

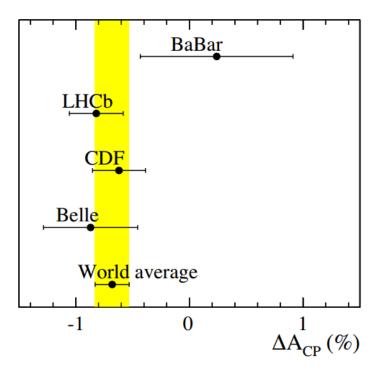
- The CP violation coming from K system is accounted for in the last term
- We can safely assume that there is no mixing or interference CP violation

NB.
$$A_{CP}(D^+ \to K_s^0 \pi^+) \approx A_{CP}(D_s^+ \to \phi \pi^+) \approx 0$$

CP Violation in D⁺, $\phi \pi^+$ and D⁺, $K_s \pi^+$

Analysis uses 1 fb⁻¹ of data collected by LHCb in 2011

Tomas Pilar


ΔA_{CP} discombobulation in D⁰ \rightarrow h⁺h⁻

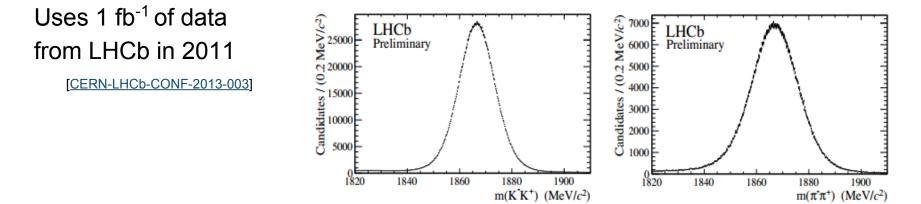
Previous results in the $D^0 \rightarrow \pi^+ \pi^-, K^+ K^-$ channels sparked controversy - CP violation from beyond SM?

Previous results for ΔA_{CP} (March 2012)

HFAG average $\Delta A_{CP} = (-0.68 \pm 0.15)\%$ 4.6 σ effect

Experiment	ΔA_{CP}	
LHCb	$(-0.82 \pm 0.21 \pm 0.11)\%$	[PRL108.111602]
CDF	$(-0.62 \pm 0.21 \pm 0.10)\%$	[PRL109.111801]
Belle	$(-0.87 \pm 0.41 \pm 0.06)\%$	[arXiv:1212.1975]
BaBar	$(+0.24 \pm 0.62 \pm 0.26)\%$	[PRL100.061803]

[Jeroen's slides at LHCP 2013]

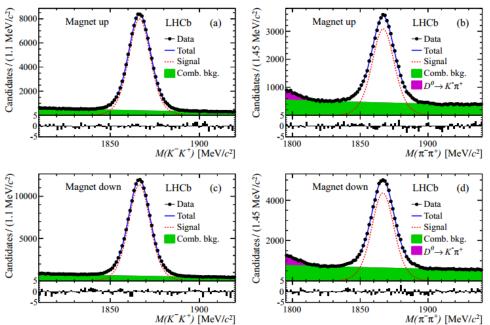

ΔA_{CP} in $D^{0} \rightarrow \pi^{+}\pi^{-}, K^{+}K^{-}$

- Decay time dependent asymmetry: $A_{CP}(t) = a_{CP}^{dir} + \frac{t}{-} a_{CP}^{mix}$
- Assuming common decay time acceptance for K and T [Phys. Rev. D75 (2007) 036008] $\Delta A_{CP}(t) = a_{CP}^{dir}(K^+K^-) - a_{CP}^{dir}(\pi^+\pi^-) + \frac{\Delta \langle t \rangle}{2} a_{CP}^{mix}$
- Not sensitive to CP violation in mixing
- Past results motivated the use of more data:
 - Prompt: $D^{*+} \rightarrow (D^0 \rightarrow h^+ h^-) \pi^+_{soft}$ Secondary: $B \rightarrow (D^0 \rightarrow h^+ h^-) \mu X$
- Both cases define ΔA_{CP}

 $\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) \approx A_{raw}(K^+K^-) - A_{raw}(\pi^+\pi^-)$

Treatment different for production and detection asymmetries between prompt and secondary, uncorrelated systematic and statistical uncertainties

ΔA_{CP} in prompt D⁰→ π⁺π⁻,K⁺K⁻

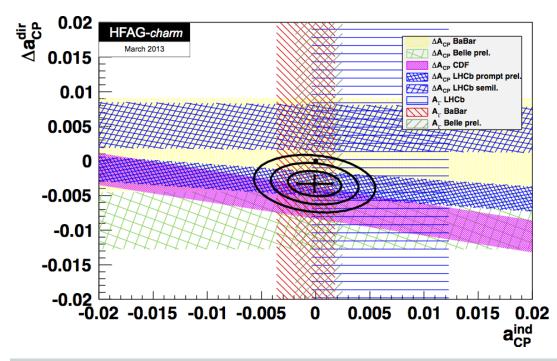

Raw asymmetry can be defined using

$$A_{raw} = A_{CP}(f) + A_D(f) + A_D(\pi_{soft}^+) + A_P(D^{*+})$$

- Self-conjugate spin-0 final states mean no detection asymmetry due to final state
- $A_D(\pi_{soft})$ and $A_P(D^*)$ depend on D* kinematics (p, p_T and ϕ)
- Can reweigh variable distributions account for differences in kinematics and selection criteria between the final states

ΔA_{CP} in secondary D⁰→ π⁺π⁻,K⁺K⁻

 All previous measurements from prompt charm - motivation to include a result from secondary as an independent measurement [arXiv:1303.2614 [hep-ex]]



$$A_{raw} = A_{CP}(f) + A_D(\mu) + A_P(B)$$

- A_P(B) is independent of final state
- Can reweight D⁰ variable distributions to account for A_D(µ) difference
 between the final states

ΔA_{CP} in D⁰→ π⁺π⁻,K⁺K⁻ (new) results

- Fit results:
 - Prompt $\Delta A_{CP} = (-0.34 \pm 0.15(stat) \pm 0.10(sys))\%$
 - Secondary $\Delta A_{CP} = (+0.49 \pm 0.30(stat) \pm 0.14(sys))\%$

[arXiv:1303.2614 [hep-ex]]

Combined HFAG value $\Delta a_{CP}^{dir} = (-0.329 \pm 0.121)\%$ LHCb average value

$$\Delta a_{CP}^{dir} = (-0.15 \pm 0.16)\%$$

[arXiv:1207.1158 [hep-ex]]

Summary

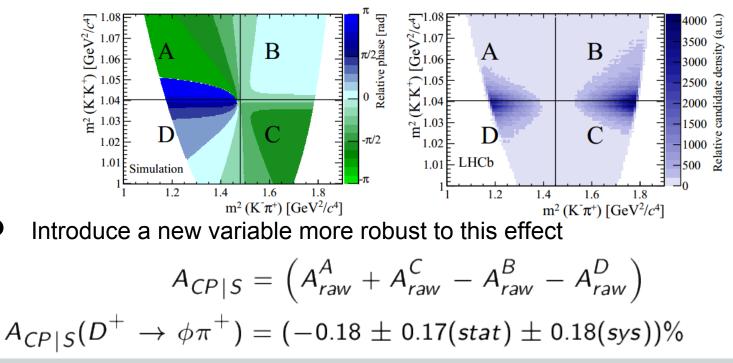
- Beautiful charm mixing result confirming at 9.1σ
- CP violation in some channels constrained with precision ~O(10⁻³)
- We have 2 fb⁻¹ more data on tape and more in 2015
- Stay Tuned

Backup slides

Here be dragons....

Summary of results

Charm mixing measurement confirming mixing at 9.1σ


$$x' = (0.9 \pm 1.3) \times 10^{-4}$$
, $y' = (7.2 \pm 2.4) \times 10^{-3}$
 $R_D = (3.52 \pm 0.15) \times 10^{-3}$

Results from time-integrated charm CP violation searches

$$\begin{aligned} A_{CP}(D^+ \to \phi \pi^+) &= (-0.04 \pm 0.14(stat) \pm 0.13(sys))\% \\ A_{CP}(D_s^+ \to K_s^0 \pi^+) &= (-0.61 \pm 0.83(stat) \pm 0.13(sys))\% \\ A_{CP|S}(D^+ \to \phi \pi^+) &= (-0.18 \pm 0.17(stat) \pm 0.18(sys))\% \\ \Delta A_{CP}^{prompt}(D^0 \to h^+ h^-) &= (-0.34 \pm -0.15(stat) \pm 0.10(sys))\% \\ \Delta A_{CP}^{secondary}(D^0 \to h^+ h^-) &= (0.49 \pm -0.30(stat) \pm 0.14(sys))\% \end{aligned}$$

CP Violation in D⁺, $\phi \pi^+$ and D⁺, $K_s \pi^+$

- Strong phase variations throughout φ region could mean that a constant
 A_{CP} could cancel out
- Split the Dalitz plot around the φ resonance into four regions, minimising strong phase variations (using CLEO data)

Tomas Pilar